Kuaishou는 에이전트 시스템, 모델 및 데이터를 오픈 소스로 공개했습니다!
7B 크기의 모델도 AI 에이전트와 함께 플레이할 수 있나요? 최근 Kuaishou는 "KwaiAgents"를 오픈했습니다. 주말 스키에 대해 문의해 보세요. 장소를 찾는 데 도움이 될 뿐만 아니라 그날의 날씨도 고려합니다.
우리 모두 알고 있듯이 LLM(대형 언어 모델)은 모델링 언어를 통해 많은 양의 지식을 습득하고 특정 인지 및 추론 능력을 갖추고 있습니다. 그러나 가장 강력한 GPT-4조차도 현재 단독으로 사용하면 잘못된 콘텐츠를 생성하고 실시간으로 세계와 상호 작용할 수 없습니다. AI 에이전트는 이 문제를 해결하는 한 가지 방법입니다. 작업을 계획하고, 반영하고, 도구를 호출하는 대형 모델의 능력을 자극함으로써 대형 모델은 실제 도구를 사용하여 생성된 콘텐츠의 정확성을 높이고 복잡한 문제를 해결하는 능력도 가질 수 있습니다. 문제. 이번에 Kuaishou와 Harbin Institute of Technology가 공동 개발한 "KwaiAgents"를 사용하면 7B/13B의 "소형" 대형 모델이 GPT-3.5의 효과를 능가할 수 있으며 이러한 시스템, 모델, 데이터 및 평가는 모두 오픈 소스입니다!
- 기술 보고서: https://arxiv.org/abs/2312.04889
- 프로젝트 홈페이지: https://github.com/K waiK EG/KwaiAgents
다음 콘텐츠는 "KwaiAgents"의 Github 홈페이지에서 찾을 수 있습니다:
- 시스템(KAgentSys-Lite): 사실적이고 시기적절한 도구 세트를 갖춘 경량 AI 에이전트 시스템
- 모델 (KAgentLMs): Meta-Agent Tuning 후 에이전트 및 해당 교육 데이터의 공통 기능을 갖춘 일련의 대규모 모델
- 평가(KAgentBench): 즉시 사용 가능한 에이전트 기능 자동 평가 벤치마크 및 수동 평가 결과 .
시스템
KAgentSys 시스템의 주요 구성 요소에는 인지 코어, 메모리 메커니즘 및 반복 자동화를 달성하기 위한 대규모 모델 기반 도구 라이브러리가 포함됩니다.
- 메모리 메커니즘: 세 가지 유형의 메모리, 지식 기반, 대화 및 작업 기록은 하이브리드 벡터 검색, 키워드 검색 및 기타 기술의 검색 프레임워크를 사용하여 각 계획된 경로에서 필요한 정보를 검색합니다.
- 도구 세트: 사실이 강화된 도구 세트가 포함되어 있습니다. 이기종 검색 및 찾아보기 메커니즘은 달력, 공휴일, 시차와 같은 일반적인 적시성을 포함하여 웹 페이지, 텍스트 백과사전, 비디오 백과사전과 같은 여러 소스의 지식을 통합할 수 있습니다. , 날씨 등 향상된 도구 세트.
- 자동 루프: 일련의 대화에서 사용자에게 질문, 선택적 지식 기반 및 전체 입력을 위한 추가 문자가 제공됩니다. 시스템은 먼저 메모리를 업데이트하고 검색한 다음 대규모 모델을 호출합니다. 작업 계획 도구를 호출해야 하는 경우 도구를 호출하고, 사용하지 않는 경우에는 요약 단계로 들어가며 과거 정보를 종합하여 예상되는 답변을 제공합니다.
KAgentSys의 일부 기능은 점진적으로 업그레이드되어 오픈될 예정입니다. 이 오픈소스의 내용은 다음과 같습니다.
Model
학습 중 단일 템플릿으로 인한 과적합 문제를 방지하기 위해, 팀이 제안한 MAT(Meta-Agent Tuning) 방법은 에이전트 기능 측면에서 대규모 모델의 다양성을 향상시키고 훈련 데이터에 더 많은 에이전트 프롬프트 템플릿을 도입하여 효과를 향상시킵니다.
메타 에이전트 튜닝(MAT)은 두 단계로 나뉩니다.
- 템플릿 생성 단계: 특정 문제 세트에 대해 Meta-Agent를 설계하여 인스턴스화된 Agent Prompt 템플릿(오른쪽 그림은 예시) 후보를 생성하고 동일한 실험 환경에서 템플릿에 의해 생성된 후보 결과를 생성합니다. , 오픈 소스 템플릿(예: ReAct, AutoGPT 등)에서 생성된 높은 신뢰도의 결과는 점수 모델을 사용하여 비교 및 점수가 매겨져 고품질 에이전트 프롬프트 템플릿 라이브러리를 선별합니다. 이러한 다양한 템플릿을 도입함으로써 모델 미세 조정 시 템플릿에 대한 의존도를 크게 줄일 수 있으며, 보다 필수적인 Agent의 작업 계획, 도구 사용, 반영 등의 역량을 다듬어 모델의 일반화 및 효율성을 향상시킬 수 있습니다. .
- 명령 미세 조정 단계: 수만 개의 템플릿을 기반으로 200,000개 이상의 에이전트 튜닝 명령 미세 조정 데이터가 구축되었습니다. 팀은 모든 사람이 사용하고 참조할 수 있도록 Qwen-7B, Baichuan2-13B 등과 같은 일부 인기 오픈 소스 모델을 조정했으며 기타 인기 모델은 향후 출시될 예정입니다.
Evaluation
KAgentBench는 수동으로 정제된 수천 개의 주석 데이터를 통해 즉시 사용 가능하며 모든 사람이 한 줄의 명령을 사용하여 대규모 모델의 에이전트 기능의 다양한 측면을 평가할 수 있습니다. 다른 템플릿.
KAgentBench에서는 위 그림과 같이 다양한 유형의 능력에 대한 입력 구성을 진행하게 됩니다. 각 쿼리에는 여러 템플릿과 실제 사람이 편집한 여러 답변이 함께 제공됩니다. 이것의 목적은 정확성과 일반화를 종합적으로 평가하는 것입니다. MAT 튜닝 후 아래 표는 다양한 기능에서 7B-13B 모델의 개선을 보여주며, GPT-3.5
연구에서도 인간 어노테이터를 200명의 사실에 초빙하여 교차 평가를 실시했습니다. "올해 앤디 라우는 몇 살입니까?"와 같이 시간에 민감한 질문에 주석이 달려 있습니다. 결과는 KAgentSys 시스템과 MAT 이후의 모델이 크게 개선되었음을 보여줍니다(정확도는 백분율로 표시되며 괄호 안에는 5점 척도의 평균 점수가 표시됨)
오랜 기간 동안 -꼬리 문제 및 인기 있는 문제, 일반적으로 웹 검색에만 의존하는 결과는 이상적이지 않습니다. 예를 들어, "안토넬라가 메시보다 나이가 많은 날은 며칠입니까?"와 같은 롱테일 질문을 하면 검색 결과는 일반적으로 핵심 정보를 제공하지 않고 이들에 대한 일부 가십을 반환합니다. KAgentSys는 백과사전 검색 도구를 호출하여 정확한 생년월일을 얻은 다음 시차 도구를 사용하여 연령 차이를 계산함으로써 이 질문에 정확하게 답할 수 있습니다. 팀은 AI Agents가 매우 유망한 경로라고 말했습니다. 앞으로도 핵심기술을 지속적으로 축적하여 커뮤니티 전체에 지속적으로 새로운 활력을 불어넣겠습니다. 동시에 우리는 Agents 기술과 Kuaishou 사업의 결합을 적극적으로 탐색하고 더욱 흥미롭고 가치 있는 혁신적인 애플리케이션을 구현하려고 노력할 것입니다
위 내용은 Kuaishou는 에이전트 시스템, 모델 및 데이터를 오픈 소스로 공개했습니다!의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

AI는 실제로 수학을 변화시키고 있습니다. 최근 이 문제에 주목하고 있는 타오저쉬안(Tao Zhexuan)은 '미국수학회지(Bulletin of the American Mathematical Society)' 최신호를 게재했다. '기계가 수학을 바꿀 것인가?'라는 주제를 중심으로 많은 수학자들이 그들의 의견을 표현했습니다. 저자는 필즈상 수상자 Akshay Venkatesh, 중국 수학자 Zheng Lejun, 뉴욕대학교 컴퓨터 과학자 Ernest Davis 등 업계의 유명 학자들을 포함해 강력한 라인업을 보유하고 있습니다. AI의 세계는 극적으로 변했습니다. 이 기사 중 상당수는 1년 전에 제출되었습니다.

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

이달 초 MIT와 기타 기관의 연구자들은 MLP에 대한 매우 유망한 대안인 KAN을 제안했습니다. KAN은 정확성과 해석성 측면에서 MLP보다 뛰어납니다. 그리고 매우 적은 수의 매개변수로 더 많은 수의 매개변수를 사용하여 실행되는 MLP보다 성능이 뛰어날 수 있습니다. 예를 들어 저자는 KAN을 사용하여 더 작은 네트워크와 더 높은 수준의 자동화로 DeepMind의 결과를 재현했다고 밝혔습니다. 구체적으로 DeepMind의 MLP에는 약 300,000개의 매개변수가 있는 반면 KAN에는 약 200개의 매개변수만 있습니다. KAN은 MLP와 같이 강력한 수학적 기반을 가지고 있으며, KAN은 Kolmogorov-Arnold 표현 정리를 기반으로 합니다. 아래 그림과 같이 KAN은

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

무엇? 주토피아는 국내 AI로 현실이 되는 걸까? 영상과 함께 노출된 것은 '켈링'이라는 국산 대형 영상세대 신형 모델이다. Sora는 유사한 기술 경로를 사용하고 자체 개발한 여러 기술 혁신을 결합하여 크고 합리적인 움직임뿐만 아니라 물리적 세계의 특성을 시뮬레이션하고 강력한 개념적 결합 능력과 상상력을 갖춘 비디오를 제작합니다. 데이터에 따르면 Keling은 최대 1080p의 해상도로 30fps에서 최대 2분의 초장 영상 생성을 지원하며 다양한 화면비를 지원합니다. 또 다른 중요한 점은 Keling이 실험실에서 공개한 데모나 비디오 결과 시연이 아니라 단편 비디오 분야의 선두주자인 Kuaishou가 출시한 제품 수준 애플리케이션이라는 점입니다. 더욱이 백지 작성이 아닌 실용성에 중점을 두고, 출시되자마자 온라인에 진출하는 데 중점을 두고 있다. 콰이잉에서는 커링의 대형 모델이 출시됐다.

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라
