Mysql在大型网站的应用架构演变_MySQL
写在最前:
本文主要描述在网站的不同的并发访问量级下,Mysql架构的演变。
可扩展性
架构的可扩展性往往和并发是息息相关,没有并发的增长,也就没有必要做高可扩展性的架构,这里对可扩展性进行简单介绍一下,常用的扩展手段有以下两种:
Scale-up : 纵向扩展,通过替换为更好的机器和资源来实现伸缩,提升服务能力。
Scale-out : 横向扩展, 通过加节点(机器)来实现伸缩,提升服务能力。
对于互联网的高并发应用来说,无疑Scale out才是出路,通过纵向的买更高端的机器一直是我们所避讳的问题,也不是长久之计,在scale out的理论下,可扩展性的理想状态是什么?
可扩展性的理想状态
一个服务,当面临更高的并发的时候,能够通过简单增加机器来提升服务支撑的并发度,且增加机器过程中对线上服务无影响(no down time),这就是可扩展性的理想状态!
架构的演变
V1.0 简单网站架构
一个简单的小型网站或者应用背后的架构可以非常简单, 数据存储只需要一个mysql instance就能满足数据读取和写入需求(这里忽略掉了数据备份的实例),处于这个时间段的网站,一般会把所有的信息存到一个database instance里面。
在这样的架构下,我们来看看数据存储的瓶颈是什么?
1.数据量的总大小 一个机器放不下时
2.数据的索引(B+ Tree)一个机器的内存放不下时
3.访问量(读写混合)一个实例不能承受
只有当以上3件事情任何一件或多件满足时,我们才需要考虑往下一级演变。 从此我们可以看出,事实上对于很多小公司小应用,这种架构已经足够满足他们的需求了,初期数据量的准确评估是杜绝过度设计很重要的一环,毕竟没有人愿意为不可能发生的事情而浪费自己的经历。
这里简单举个我的例子,对于用户信息这类表 (3个索引),16G内存能放下大概2000W行数据的索引,简单的读和写混合访问量3000/s左右没有问题,你的应用场景是否
V2.0 垂直拆分
一般当V1.0 遇到瓶颈时,首先最简便的拆分方法就是垂直拆分,何谓垂直?就是从业务角度来看,将关联性不强的数据拆分到不同的instance上,从而达到消除瓶颈的目标。以图中的为例,将用户信息数据,和业务数据拆分到不同的三个实例上。对于重复读类型比较多的场景,我们还可以加一层cache,来减少对DB的压力。
在这样的架构下,我们来看看数据存储的瓶颈是什么?
1.单实例单业务 依然存在V1.0所述瓶颈
遇到瓶颈时可以考虑往本文更高V版本升级, 若是读请求导致达到性能瓶颈可以考虑往V3.0升级, 其他瓶颈考虑往V4.0升级
V3.0 主从架构
此类架构主要解决V2.0架构下的读问题,通过给Instance挂数据实时备份的思路来迁移读取的压力,在Mysql的场景下就是通过主从结构,主库抗写压力,通过从库来分担读压力,对于写少读多的应用,V3.0主从架构完全能够胜任
在这样的架构下,我们来看看数据存储的瓶颈是什么?
1.写入量主库不能承受
V4.0 水平拆分
对于V2.0 V3.0方案遇到瓶颈时,都可以通过水平拆分来解决,水平拆分和垂直拆分有较大区别,垂直拆分拆完的结果,在一个实例上是拥有全量数据的,而水平拆分之后,任何实例都只有全量的1/n的数据,以下图Userinfo的拆分为例,将userinfo拆分为3个cluster,每个cluster持有总量的1/3数据,3个cluster数据的总和等于一份完整数据(注:这里不再叫单个实例 而是叫一个cluster 代表包含主从的一个小mysql集群)
数据如何路由?
1.Range拆分
sharding key按连续区间段路由,一般用在有严格自增ID需求的场景上,如Userid, Userid Range的小例子:以userid 3000W 为Range进行拆分 1号cluster userid 1-3000W 2号cluster userid 3001W-6000W
2.List拆分
List拆分与Range拆分思路一样,都是通过给不同的sharding key来路由到不同的cluster,但是具体方法有些不同,List主要用来做sharding key不是连续区间的序列落到一个cluster的情况,如以下场景:
假定有20个音像店,分布在4个有经销权的地区,如下表所示:
地区 |
商店ID 号 |
北区 |
3, 5, 6, 9, 17 |
东区 |
1, 2, 10, 11, 19, 20 |
西区 |
4, 12, 13, 14, 18 |
中心区 |
7, 8, 15, 16 |
业务希望能够把一个地区的所有数据组织到一起来搜索,这种场景List拆分可以轻松搞定
3.Hash拆分
通过对sharding key 进行哈希的方式来进行拆分,常用的哈希方法有除余,字符串哈希等等,除余如按userid%n 的值来决定数据读写哪个cluster,其他哈希类算法这里就不细展开讲了。
数据拆分后引入的问题:
数据水平拆分引入的问题主要是只能通过sharding key来读写操作,例如以userid为sharding key的切分例子,读userid的详细信息时,一定需要先知道userid,这样才能推算出再哪个cluster进而进行查询,假设我需要按username进行检索用户信息,需要引入额外的反向索引机制(类似HBASE二级索引),如在redis上存储username->userid的映射,以username查询的例子变成了先通过查询username->userid,再通过userid查询相应的信息。
实际上这个做法很简单,但是我们不要忽略了一个额外的隐患,那就是数据不一致的隐患。存储在redis里的username->userid和存储在mysql里的userid->username必须需要是一致的,这个保证起来很多时候是一件比较困难的事情,举个例子来说,对于修改用户名这个场景,你需要同时修改redis和mysql,这两个东西是很难做到事务保证的,如mysql操作成功 但是redis却操作失败了(分布式事务引入成本较高),对于互联网应用来说,可用性是最重要的,一致性是其次,所以能够容忍小量的不一致出现. 毕竟从占比来说,这类的不一致的比例可以微乎其微到忽略不计(一般写更新也会采用mq来保证直到成功为止才停止重试操作)
在这样的架构下,我们来看看数据存储的瓶颈是什么?
在这个拆分理念上搭建起来的架构,理论上不存在瓶颈(sharding key能确保各cluster流量相对均衡的前提下),不过确有一件恶心的事情,那就是cluster扩容的时候重做数据的成本,如我原来有3个cluster,但是现在我的数据增长比较快,我需要6个cluster,那么我们需要将每个cluster 一拆为二,一般的做法是
1.摘下一个slave,停同步,
2.对写记录增量log(实现上可以业务方对写操作 多一次写持久化mq 或者mysql主创建trigger记录写 等等方式)
3.开始对静态slave做数据, 一拆为二
4.回放增量写入,直到追上的所有增量,与原cluster基本保持同步
5.写入切换,由原3 cluster 切换为6cluster
有没有类似飞机空中加油的感觉,这是一个脏活,累活,容易出问题的活,为了避免这个,我们一般在最开始的时候,设计足够多的sharding cluster来防止可能的cluster扩容这件事情

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

PHP에서 화살표 기호의 역할과 실제 적용 PHP에서 화살표 기호(->)는 일반적으로 객체의 속성과 메서드에 액세스하는 데 사용됩니다. 객체는 PHP의 객체지향 프로그래밍(OOP)의 기본 개념 중 하나입니다. 실제 개발에서는 객체를 조작할 때 화살표 기호가 중요한 역할을 합니다. 이 기사에서는 화살표 기호의 역할과 실제 적용을 소개하고 독자의 이해를 돕기 위해 구체적인 코드 예제를 제공합니다. 1. 객체의 속성에 접근하기 위한 화살표 기호의 역할 화살표 기호를 사용하여 객체의 속성에 접근할 수 있습니다. 쌍을 인스턴스화할 때

홈 화면에서 중요한 항목을 삭제하고 다시 복구하려고 하시나요? 다양한 방법으로 앱 아이콘을 화면에 다시 표시할 수 있습니다. 우리는 당신이 따라갈 수 있는 모든 방법과 홈 화면에 앱 아이콘을 다시 넣을 수 있는 방법에 대해 논의했습니다. 방법 1 - 앱 라이브러리에서 앱 아이콘 바꾸기 앱 라이브러리에서 직접 홈 화면에 앱 아이콘을 배치할 수 있습니다. 1단계 – 옆으로 스와이프하여 앱 라이브러리의 모든 앱을 찾습니다. 2단계 – 이전에 삭제한 앱 아이콘을 찾습니다. 3단계 – 메인 라이브러리의 앱 아이콘을 홈 화면의 올바른 위치로 드래그하기만 하면 됩니다. 이것은 응용 다이어그램입니다

지연이 발생하고 iPhone의 모바일 데이터 연결 속도가 느립니까? 일반적으로 휴대폰의 셀룰러 인터넷 강도는 지역, 셀룰러 네트워크 유형, 로밍 유형 등과 같은 여러 요소에 따라 달라집니다. 더 빠르고 안정적인 셀룰러 인터넷 연결을 얻기 위해 할 수 있는 일이 몇 가지 있습니다. 수정 1 – iPhone 강제 다시 시작 때로는 장치를 강제로 다시 시작하면 셀룰러 연결을 포함한 많은 항목이 재설정됩니다. 1단계 – 볼륨 높이기 키를 한 번 눌렀다가 놓습니다. 그런 다음 볼륨 작게 키를 눌렀다가 다시 놓습니다. 2단계 - 프로세스의 다음 부분은 오른쪽에 있는 버튼을 누르는 것입니다. iPhone이 다시 시작되도록 하세요. 셀룰러 데이터를 활성화하고 네트워크 속도를 확인하세요. 다시 확인하세요 수정 2 – 데이터 모드 변경 5G는 더 나은 네트워크 속도를 제공하지만 신호가 약할 때 더 잘 작동합니다

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

최근 군계는 미군 전투기가 이제 AI를 활용해 완전 자동 공중전을 완수할 수 있다는 소식에 충격을 받았다. 네, 얼마 전 미군의 AI 전투기가 최초로 공개되면서 그 미스터리가 드러났습니다. 이 전투기의 정식 명칭은 VISTA(Variable Stability Flight Simulator Test Aircraft)로 미 공군 장관이 직접 조종해 일대일 공중전을 모의 실험한 것이다. 5월 2일, 미 공군 장관 프랭크 켄달(Frank Kendall)이 X-62AVISTA를 타고 에드워드 공군 기지에서 이륙했습니다. 1시간의 비행 동안 모든 비행 작업은 AI에 의해 자동으로 완료되었습니다. Kendall은 "지난 수십 년 동안 우리는 자율 공대공 전투의 무한한 잠재력에 대해 생각해 왔지만 항상 도달할 수 없는 것처럼 보였습니다."라고 말했습니다. 그러나 지금은,

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라
