안내가 필요 없고 일반화된 시각화 모델에 사용할 수 있는 최초의 가구 및 가전제품용 범용 3D 그래픽 및 텍스트 모델 시스템
요즘 집안일은 모두 로봇이 대신하고 있어요.
냄비를 사용할 수 있는 스탠포드의 로봇이 등장했고, 커피머신을 사용할 수 있는 로봇이 도착했습니다, Figure-01.
그림-01 시연영상을 시청하시고 10시간 교육만 받으시면 커피머신을 능숙하게 조작하실 수 있습니다. 커피 캡슐 삽입부터 시작 버튼 누르기까지 모두 한 번에 끝납니다.
그러나 다양한 가구, 가전제품을 접했을 때 시연 영상 없이 로봇이 스스로 사용법을 학습할 수 있도록 하는 것은 어려운 문제입니다. 이를 위해서는 로봇이 강력한 시각적 인식과 의사결정 계획 능력은 물론 정밀한 조작 기술을 갖춰야 합니다.
문서 링크: https://arxiv.org/abs/2312.01307
프로젝트 홈페이지: https://geometry.stanford.edu/projects/sage/
코드: https://github.com/ geng-haoran/SAGE
연구 문제 개요
그림 1: 로봇 팔은 인간의 지시에 따라 별도의 지시 없이도 다양한 가전제품을 사용할 수 있습니다.
최근 PaLM-E와 GPT-4V는 로봇 작업 계획에 대형 그래픽 모델의 적용을 추진했으며, 시각적 언어를 통해 안내되는 일반화된 로봇 제어가 인기 있는 연구 분야가 되었습니다.
과거에는 상위 계층의 대형 그래픽 모델이 계획과 스킬 스케줄링을 담당하고, 하위 계층의 제어 스킬 전략 모델이 물리적인 행동 실행을 담당하는 2계층 시스템을 구축하는 것이 일반적이었습니다. 하지만 로봇이 지금까지 본 적 없는 다양한 가전제품을 마주하고 집안일에 다단계 작업이 필요한 경우 기존 방식의 상하층 모두 무력해질 것이다.
최첨단 그래픽 모델인 GPT-4V를 예로 들어보겠습니다. 텍스트로 단일 그림을 설명할 수 있지만 작동 가능한 부품의 감지, 계산, 위치 지정 및 상태 추정에 있어서는 여전히 오류가 가득합니다. 그림 2의 빨간색 하이라이트는 서랍장, 오븐, 스탠딩 캐비닛의 사진을 설명할 때 GPT-4V가 저지른 다양한 오류입니다. 잘못된 설명으로 인해 로봇의 스킬 스케줄링은 확실히 신뢰할 수 없습니다.
그림 2: GPT-4V는 계산, 감지, 포지셔닝 및 상태 추정과 같은 일반화된 제어에 초점을 맞춘 작업을 처리할 수 없습니다.
하위 제어 기술 전략 모델은 다양한 실제 상황에서 상위 그래픽 및 텍스트 모델이 제공하는 작업을 실행하는 역할을 담당합니다. 기존 연구 결과의 대부분은 알려진 일부 객체의 파악 지점과 작동 방식을 규칙에 따라 엄격하게 인코딩하고 있으며 일반적으로 이전에 볼 수 없었던 새로운 객체 범주를 다룰 수 없습니다. 그러나 RT-1, RT-2 등의 엔드투엔드 작업 모델은 RGB 형식만 사용하고 거리에 대한 정확한 인식이 부족하며 높이와 같은 새로운 환경의 변화에 대한 일반화가 부족합니다.
왕허 교수팀의 이전 CVPR 하이라이트 작업인 GAPartNet[1]에서 영감을 받아 연구팀은 다양한 가전제품 카테고리의 공통 부품(GAParts)에 중점을 두었습니다. 가전제품은 끊임없이 변화하지만, 각 가전제품과 이러한 공통 부품 사이에는 항상 유사한 기하학적 구조와 상호 작용 패턴이 있습니다.
그 결과 연구팀은 GAPartNet[1]이라는 논문에서 GAPart의 개념을 소개했습니다. GAPart는 일반화 가능하고 대화형 구성 요소를 나타냅니다. GAPart는 힌지 개체의 다양한 범주에 나타납니다. 예를 들어 힌지 도어는 금고, 옷장 및 냉장고에서 찾을 수 있습니다. 그림 3에서 볼 수 있듯이 GAPartNet [1]은 다양한 유형의 객체에 대한 GAPart의 의미와 포즈에 주석을 답니다.
그림 3: GAPart: 일반화 가능하고 대화형 부분 [1].
연구팀은 이전 연구를 바탕으로 로봇의 객체 조작 시스템 SAGE에 3차원 비전 기반의 GAPart를 창의적으로 도입했습니다. SAGE는 일반화 가능한 3D 부품 감지 및 정확한 자세 추정을 통해 VLM 및 LLM에 대한 정보를 제공합니다. 의사결정 수준에서 새로운 방법은 실행 수준에서 2차원 그래픽 모델의 정확한 계산 및 추론 능력이 부족하다는 문제를 해결하고, 강력한 물리적 연산 API를 기반으로 각 부분에 대한 일반화된 연산을 달성합니다. GAPart 포즈.
SAGE는 최초의 3차원 구현 그래픽 및 텍스트 대규모 모델 시스템으로, 인식, 물리적 상호 작용, 피드백까지 로봇의 전체 연결에 대한 새로운 아이디어를 제공하고 로봇이 다음과 같은 복잡한 객체를 지능적이고 보편적으로 제어할 수 있는 새로운 방법을 탐구합니다. 가구 및 가전 제품으로 실행 가능한 경로입니다.
시스템 소개
그림 4는 SAGE의 기본 프로세스를 보여줍니다. 먼저, 상황을 해석할 수 있는 명령 해석 모듈은 로봇에 입력된 명령과 관찰 내용을 구문 분석하고 이러한 구문 분석을 다음 로봇 동작 프로그램 및 관련 의미 부분으로 변환합니다. 다음으로 SAGE는 의미 부분(예: 컨테이너)을 작동해야 하는 부분(예: 슬라이더 버튼)에 매핑하고 작업(예: 버튼의 "누르기" 동작)을 생성하여 작업을 완료합니다.
그림 4: 방법 개요.





그림 11: SAPIEN 시뮬레이션 실험.
그들은 SAPIEN 환경[4]을 사용하여 시뮬레이션 실험을 수행하고 12개의 언어 기반 관절 개체 조작 작업을 설계했습니다. 전자레인지, 수납가구, 캐비닛의 각 카테고리에 대해 서로 다른 초기 상태의 열린 상태와 닫힌 상태를 포함하여 3가지 작업을 설계했습니다. 다른 작업으로는 "냄비 뚜껑 열기", "리모콘 버튼 누르기", "블렌더 시작하기" 등이 있습니다. 실험 결과에 따르면 SAGE는 거의 모든 작업에서 우수한 성능을 발휘하는 것으로 나타났습니다.

요약
SAGE는 가구, 가전제품 등 복잡한 관절 개체를 제어하기 위한 일반 명령을 생성할 수 있는 최초의 3D 시각적 언어 모델 프레임워크입니다. 객체 의미론과 부품 수준의 조작성 이해를 연결하여 언어가 지시하는 작업을 실행 가능한 조작으로 변환합니다.팀 소개
SAGE 이 연구 결과는 스탠포드 대학교 Leonidas Guibas 교수 연구실과 북경 대학교 Wang He 교수의 EPIC Lab(Embodied Perception and Interaction), Zhiyuan 인공 지능 연구소에서 나온 것입니다. 논문의 저자는 북경대학교 학생이자 스탠포드대학교 방문학자 Geng Haoran(공동저자), 북경대학교 박사과정 학생 Wei Songlin(공동저자), 스탠포드대학교 박사과정 학생 Deng Congyue 및 Shen Bokui이며 지도교수는 Leonidas 교수입니다. 기바스와 왕허 교수.참고자료:
[2] Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al. "무엇이든 분류하세요." arXiv 사전 인쇄 arXiv:2304.02643(2023).
[3] Zhang,Hao,Feng Li,Shilong Liu,Lei Zhang,Hang Su,Jun Zhu,Lionel M。Ni,Heung-Yeung Shum。"Dino: 종단 간 노이즈 제거 앵커 박스가 개선된 Detr 최종 개체 감지." arXiv 사전 인쇄 arXiv:2203.03605 (2022). [4] Xiang, Fanbo, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu 외."Sapien: 시뮬레이션된 부분 기반 대화형 환경." 컴퓨터 비전 및 패턴 인식에 관한 IEEE/CVF 회의 진행 중,pp。11097-11107。2020.
위 내용은 안내가 필요 없고 일반화된 시각화 모델에 사용할 수 있는 최초의 가구 및 가전제품용 범용 3D 그래픽 및 텍스트 모델 시스템의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











역시 Tusheng 영상이지만 PaintsUndo는 다른 경로를 택했습니다. ControlNet 작성자 LvminZhang이 다시 살기 시작했습니다! 이번에는 회화 분야를 목표로 삼고 있습니다. 새로운 프로젝트인 PaintsUndo는 출시된 지 얼마 되지 않아 1.4kstar(여전히 상승세)를 받았습니다. 프로젝트 주소: https://github.com/lllyasviel/Paints-UNDO 이 프로젝트를 통해 사용자는 정적 이미지를 입력하고 PaintsUndo는 자동으로 라인 초안부터 완성품 따라가기까지 전체 페인팅 과정의 비디오를 생성하도록 도와줍니다. . 그리는 과정에서 선의 변화가 놀랍습니다. 최종 영상 결과는 원본 이미지와 매우 유사합니다. 완성된 그림을 살펴보겠습니다.

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 이 논문의 저자는 모두 일리노이 대학교 Urbana-Champaign(UIUC)의 Zhang Lingming 교사 팀 출신입니다. Steven Code Repair, 박사 4년차, 연구원

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 인공 지능 개발 과정에서 LLM(대형 언어 모델)의 제어 및 안내는 항상 핵심 과제 중 하나였으며 이러한 모델이 두 가지 모두를 보장하는 것을 목표로 했습니다. 강력하고 안전하게 인간 사회에 봉사합니다. 인간 피드백(RL)을 통한 강화 학습 방법에 초점을 맞춘 초기 노력

AI 모델이 내놓은 답변이 전혀 이해하기 어렵다면 감히 사용해 보시겠습니까? 기계 학습 시스템이 더 중요한 영역에서 사용됨에 따라 우리가 그 결과를 신뢰할 수 있는 이유와 신뢰할 수 없는 경우를 보여주는 것이 점점 더 중요해지고 있습니다. 복잡한 시스템의 출력에 대한 신뢰를 얻는 한 가지 가능한 방법은 시스템이 인간이나 다른 신뢰할 수 있는 시스템이 읽을 수 있는 출력 해석을 생성하도록 요구하는 것입니다. 즉, 가능한 오류가 발생할 수 있는 지점까지 완전히 이해할 수 있습니다. 설립하다. 예를 들어, 사법 시스템에 대한 신뢰를 구축하기 위해 우리는 법원이 자신의 결정을 설명하고 뒷받침하는 명확하고 읽기 쉬운 서면 의견을 제공하도록 요구합니다. 대규모 언어 모델의 경우 유사한 접근 방식을 채택할 수도 있습니다. 그러나 이 접근 방식을 사용할 때는 언어 모델이 다음을 생성하는지 확인하세요.

건배! 종이 토론이 말로만 진행된다면 어떤가요? 최근 스탠포드 대학교 학생들은 arXiv 논문에 대한 질문과 의견을 직접 게시할 수 있는 arXiv 논문에 대한 공개 토론 포럼인 alphaXiv를 만들었습니다. 웹사이트 링크: https://alphaxiv.org/ 실제로 이 웹사이트를 특별히 방문할 필요는 없습니다. URL에서 arXiv를 alphaXiv로 변경하면 alphaXiv 포럼에서 해당 논문을 바로 열 수 있습니다. 논문, 문장: 오른쪽 토론 영역에서 사용자는 저자에게 논문의 아이디어와 세부 사항에 대해 질문하는 질문을 게시할 수 있습니다. 예를 들어 다음과 같이 논문 내용에 대해 의견을 제시할 수도 있습니다.

최근 새천년 7대 과제 중 하나로 알려진 리만 가설이 새로운 돌파구를 마련했다. 리만 가설은 소수 분포의 정확한 특성과 관련된 수학에서 매우 중요한 미해결 문제입니다(소수는 1과 자기 자신으로만 나눌 수 있는 숫자이며 정수 이론에서 근본적인 역할을 합니다). 오늘날의 수학 문헌에는 리만 가설(또는 일반화된 형식)의 확립에 기초한 수학적 명제가 천 개가 넘습니다. 즉, 리만 가설과 그 일반화된 형식이 입증되면 천 개가 넘는 명제가 정리로 확립되어 수학 분야에 지대한 영향을 미칠 것이며, 리만 가설이 틀린 것으로 입증된다면, 이러한 제안의 일부도 그 효과를 잃을 것입니다. MIT 수학 교수 Larry Guth와 Oxford University의 새로운 돌파구

LLM에 인과관계 사슬을 보여주면 공리를 학습합니다. AI는 이미 수학자 및 과학자의 연구 수행을 돕고 있습니다. 예를 들어, 유명한 수학자 Terence Tao는 GPT와 같은 AI 도구의 도움을 받아 자신의 연구 및 탐색 경험을 반복적으로 공유했습니다. AI가 이러한 분야에서 경쟁하려면 강력하고 신뢰할 수 있는 인과관계 추론 능력이 필수적입니다. 본 논문에서 소개할 연구에서는 작은 그래프의 인과 전이성 공리 시연을 위해 훈련된 Transformer 모델이 큰 그래프의 전이 공리로 일반화될 수 있음을 발견했습니다. 즉, Transformer가 단순한 인과 추론을 수행하는 방법을 학습하면 보다 복잡한 인과 추론에 사용될 수 있습니다. 팀이 제안하는 공리적 훈련 프레임워크는 시연만으로 패시브 데이터를 기반으로 인과 추론을 학습하는 새로운 패러다임입니다.

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 서문 최근 몇 년 동안 다양한 분야에서 MLLM(Multimodal Large Language Model)의 적용이 눈에 띄는 성공을 거두었습니다. 그러나 많은 다운스트림 작업의 기본 모델로서 현재 MLLM은 잘 알려진 Transformer 네트워크로 구성됩니다.
