기술 주변기기 일체 포함 새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리

새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리

Jan 12, 2024 pm 11:48 PM
이론 arxiv

최근에는 Transformer의 수학적 원리에 대한 새로운 해석을 제공하는 논문이 arxiv에 발표되었습니다. 내용이 매우 길고, 원문을 읽어 보시기를 적극 권장합니다.

2017년 Vaswani 등이 출판한 "Attention is all you need"는 신경망 아키텍처 개발에 중요한 이정표가 되었습니다. 본 논문의 핵심 기여는 Transformers를 기존 아키텍처와 구별하는 혁신이며 우수한 실제 성능에 중요한 역할을 하는 self-attention 메커니즘입니다.

실제로 이러한 혁신은 컴퓨터 비전, 자연어 처리 등의 분야에서 인공 지능 발전의 핵심 촉매제가 되었으며, 대규모 언어 모델의 출현에도 핵심적인 역할을 했습니다. 따라서 Transformers, 특히 self-attention이 데이터를 처리하는 메커니즘을 이해하는 것은 중요하지만 대체로 충분히 연구되지 않은 영역입니다.

새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리

문서 주소: https://arxiv.org/pdf/2312.10794.pdf

심층 신경망(DNN)에는 공통 기능이 있습니다. 즉, 입력 데이터가 순서대로 계층별로 처리되어 시간 이산 동적 시스템(구체적인 내용은 MIT에서 출판한 "Deep Learning"(중국에서는 "Flower Book"이라고도 함)을 참조하십시오.) 이 관점은 신경 상미분 방정식(신경 ODE)이라고 불리는 시간 연속 동적 시스템에 잔차 네트워크를 모델링하는 데 성공적으로 사용되었습니다. 신 상수 미분 방정식에서 입력 이미지 새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리는 시간 간격(0, T)에 걸쳐 주어진 시변 속도 장 새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리에 따라 진화합니다. 따라서 DNN은 하나의 새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리에서 다른 새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리으로의 흐름 맵 새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리으로 볼 수 있습니다. 고전적인 DNN 아키텍처의 제약에 따라 속도 필드새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리에서도 흐름 맵 간에는 강한 유사성이 있습니다.

연구원들은 Transformer가 실제로 새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리의 흐름 매핑, 즉 d차원 확률 측정 공간(확률 측정 공간) 간의 매핑임을 발견했습니다. 미터법 공간 간을 변환하는 흐름 매핑을 구현하려면 변환기는 평균 필드 상호 작용 입자 시스템을 설정해야 합니다.

구체적으로 각 입자(딥러닝의 맥락에서 토큰으로 이해될 수 있음)는 벡터장의 흐름을 따르며 흐름은 모든 입자의 경험적 척도에 따라 달라집니다. 결과적으로 방정식은 오랫동안 지속될 수 있고 지속적인 주의가 필요한 프로세스인 입자의 경험적 측정의 진화를 결정합니다.

연구원들의 주요 관찰은 입자가 결국 서로 뭉치는 경향이 있다는 것입니다. 이 현상은 단방향 파생(즉, 시퀀스의 다음 단어 예측)과 같은 학습 작업에서 특히 두드러집니다. 출력 메트릭은 다음 토큰의 확률 분포를 인코딩하며, 클러스터링 결과를 기반으로 소수의 가능한 결과를 필터링할 수 있습니다.

이 기사의 연구 결과는 극한 분포가 실제로 점 질량이며 다양성이나 임의성이 없음을 보여 주지만 이는 실제 관찰 결과와 일치하지 않습니다. 이 명백한 역설은 입자가 오랜 기간 동안 다양한 상태로 존재한다는 사실로 해결됩니다. 그림 2와 그림 4에서 볼 수 있듯이 Transformer에는 두 가지 다른 시간 척도가 있습니다. 첫 번째 단계에서는 모든 토큰이 여러 클러스터를 빠르게 형성하는 반면, 두 번째 단계(첫 번째 단계보다 훨씬 느림)에서는 쌍 단위 병합 프로세스가 진행됩니다. 클러스터의 모든 토큰은 결국 한 지점으로 축소됩니다.

새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리

새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리

이 글의 목적은 두 가지입니다. 한편으로, 이 글은 수학적 관점에서 트랜스포머를 연구하기 위한 일반적이고 이해하기 쉬운 프레임워크를 제공하는 것을 목표로 합니다. 특히, 이러한 상호 작용하는 입자 시스템의 구조를 통해 연구자들은 비선형 전송 방정식, Wasserstein 경사 흐름, 집단 행동 모델 및 구 위 점의 최적 구성을 포함하여 수학에서 확립된 주제에 구체적으로 연결할 수 있습니다. 한편, 이 논문에서는 장기간에 걸쳐 현상을 클러스터링하는 데 특별히 초점을 맞춘 몇 가지 유망한 연구 방향을 설명합니다. 연구자들이 제안한 주요 결과 측정은 새로운 것이며, 논문 전체에서 흥미롭다고 생각되는 공개 질문을 제기하기도 합니다.

이 기사의 주요 내용은 세 부분으로 나뉩니다.

새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리


1부: 모델링. 이 기사에서는 레이어 수를 연속시간 변수로 처리하는 Transformer 아키텍처의 이상적인 모델을 정의합니다. 추상화에 대한 이러한 접근 방식은 새로운 것이 아니며 ResNets와 같은 클래식 아키텍처에서 사용하는 접근 방식과 유사합니다. 이 기사의 모델은 Transformer 아키텍처의 두 가지 주요 구성 요소인 self-attention 메커니즘과 레이어 정규화에만 중점을 둡니다. 레이어 정규화는 입자를 단위 구의 공간새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리에 효과적으로 제한하는 반면, Self-Attention 메커니즘은 경험적 측정을 통해 입자 간의 비선형 결합을 달성합니다. 결과적으로, 경험적 측정은 연속성 편미분 방정식에 따라 전개됩니다. 이 기사에서는 또한 self-attention을 위한 더 간단하고 사용하기 쉬운 대체 모델인 에너지 함수의 Wasserstein 경사 흐름을 소개하며, 에너지 함수 영역에서 점의 최적 구성을 위한 성숙한 연구 방법이 이미 있습니다.

2부: 클러스터링. 이 부분에서 연구원들은 장기간에 걸쳐 토큰 클러스터링에 대한 새로운 수학적 결과를 제안합니다. 정리 4.1에서 볼 수 있듯이 고차원 공간에서는 단위 공에 무작위로 초기화된 n개의 입자 그룹이 새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리의 한 점으로 모일 것입니다. 입자 클러스터의 수축률에 대한 연구원의 정확한 설명은 이 결과를 보완합니다. 구체적으로 연구자들은 모든 입자 사이의 거리와 모든 입자가 클러스터링을 완료하려고 하는 시점에 대한 히스토그램을 그렸습니다(원본 기사의 섹션 4 참조). 연구자들은 또한 큰 차원 d를 가정하지 않고 클러스터링 결과를 얻었습니다(원본 기사의 섹션 5 참조).

3부: 앞을 내다봅니다. 본 논문은 주로 개방형 질문 형태로 질문을 제기하고 수치적 관찰을 통해 이를 입증함으로써 향후 연구의 잠재적인 노선을 제안합니다. 연구자들은 먼저 차원 d = 2의 경우에 초점을 맞추고(원문 기사의 섹션 6 참조) Kuramoto 발진기와의 연관성을 끌어냈습니다. 그런 다음 모델을 간단하고 자연스럽게 수정하여 구면 최적화와 관련된 어려운 문제를 어떻게 해결할 수 있는지 간략하게 보여줍니다(원본 기사의 섹션 7 참조). 다음 장에서는 Transformer 아키텍처의 매개변수를 조정하여 나중에 실제 응용할 수 있도록 하는 상호 작용 입자 시스템을 살펴봅니다.

위 내용은 새로운 버전 공개: 지금까지 본 적 없는 Transformer의 수학적 원리의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

'Defect Spectrum'은 기존 결함 감지의 경계를 뛰어넘어 초고정밀 및 풍부한 의미론적 산업 결함 감지를 최초로 달성합니다. 'Defect Spectrum'은 기존 결함 감지의 경계를 뛰어넘어 초고정밀 및 풍부한 의미론적 산업 결함 감지를 최초로 달성합니다. Jul 26, 2024 pm 05:38 PM

현대 제조업에서 정확한 결함 검출은 제품 품질을 보장하는 열쇠일 뿐만 아니라 생산 효율성을 향상시키는 핵심이기도 합니다. 그러나 기존 결함 감지 데이터세트는 실제 적용에 필요한 정확성과 의미론적 풍부함이 부족한 경우가 많아 모델이 특정 결함 카테고리나 위치를 식별할 수 없게 됩니다. 이 문제를 해결하기 위해 광저우 과학기술대학교와 Simou Technology로 구성된 최고 연구팀은 산업 결함에 대한 상세하고 의미론적으로 풍부한 대규모 주석을 제공하는 "DefectSpectrum" 데이터 세트를 혁신적으로 개발했습니다. 표 1에서 볼 수 있듯이, 다른 산업 데이터 세트와 비교하여 "DefectSpectrum" 데이터 세트는 가장 많은 결함 주석(5438개의 결함 샘플)과 가장 상세한 결함 분류(125개의 결함 카테고리)를 제공합니다.

NVIDIA 대화 모델 ChatQA는 버전 2.0으로 발전했으며 컨텍스트 길이는 128K로 언급되었습니다. NVIDIA 대화 모델 ChatQA는 버전 2.0으로 발전했으며 컨텍스트 길이는 128K로 언급되었습니다. Jul 26, 2024 am 08:40 AM

오픈 LLM 커뮤니티는 백개의 꽃이 피어 경쟁하는 시대입니다. Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 등을 보실 수 있습니다. 훌륭한 연기자. 그러나 GPT-4-Turbo로 대표되는 독점 대형 모델과 비교하면 개방형 모델은 여전히 ​​많은 분야에서 상당한 격차를 보이고 있습니다. 일반 모델 외에도 프로그래밍 및 수학을 위한 DeepSeek-Coder-V2, 시각 언어 작업을 위한 InternVL과 같이 핵심 영역을 전문으로 하는 일부 개방형 모델이 개발되었습니다.

Google AI가 IMO 수학 올림피아드 은메달을 획득하고 수학적 추론 모델 AlphaProof가 출시되었으며 강화 학습이 다시 시작되었습니다. Google AI가 IMO 수학 올림피아드 은메달을 획득하고 수학적 추론 모델 AlphaProof가 출시되었으며 강화 학습이 다시 시작되었습니다. Jul 26, 2024 pm 02:40 PM

AI의 경우 수학 올림피아드는 더 이상 문제가 되지 않습니다. 목요일에 Google DeepMind의 인공 지능은 AI를 사용하여 올해 국제 수학 올림피아드 IMO의 실제 문제를 해결하는 위업을 달성했으며 금메달 획득에 한 걸음 더 다가섰습니다. 지난 주 막 끝난 IMO 대회에는 대수학, 조합론, 기하학, 수론 등 6개 문제가 출제됐다. 구글이 제안한 하이브리드 AI 시스템은 4문제를 맞혀 28점을 얻어 은메달 수준에 이르렀다. 이달 초 UCLA 종신 교수인 테렌스 타오(Terence Tao)가 상금 100만 달러의 AI 수학 올림피아드(AIMO Progress Award)를 추진했는데, 예상외로 7월 이전에 AI 문제 해결 수준이 이 수준으로 향상됐다. IMO에서 동시에 질문을 해보세요. 가장 정확하게 하기 어려운 것이 IMO인데, 역사도 가장 길고, 규모도 가장 크며, 가장 부정적이기도 합니다.

수백만 개의 결정 데이터로 훈련하여 결정학적 위상 문제를 해결하는 딥러닝 방법인 PhAI가 Science에 게재되었습니다. 수백만 개의 결정 데이터로 훈련하여 결정학적 위상 문제를 해결하는 딥러닝 방법인 PhAI가 Science에 게재되었습니다. Aug 08, 2024 pm 09:22 PM

Editor |KX 오늘날까지 단순한 금속부터 큰 막 단백질에 이르기까지 결정학을 통해 결정되는 구조적 세부 사항과 정밀도는 다른 어떤 방법과도 비교할 수 없습니다. 그러나 가장 큰 과제인 소위 위상 문제는 실험적으로 결정된 진폭에서 위상 정보를 검색하는 것입니다. 덴마크 코펜하겐 대학의 연구원들은 결정 위상 문제를 해결하기 위해 PhAI라는 딥러닝 방법을 개발했습니다. 수백만 개의 인공 결정 구조와 그에 상응하는 합성 회절 데이터를 사용하여 훈련된 딥러닝 신경망은 정확한 전자 밀도 맵을 생성할 수 있습니다. 연구는 이 딥러닝 기반의 순순한 구조 솔루션 방법이 단 2옹스트롬의 해상도로 위상 문제를 해결할 수 있음을 보여줍니다. 이는 원자 해상도에서 사용할 수 있는 데이터의 10~20%에 해당하는 반면, 기존의 순순한 계산은

자연의 관점: 의학 분야의 인공지능 테스트는 혼란에 빠졌습니다. 어떻게 해야 할까요? 자연의 관점: 의학 분야의 인공지능 테스트는 혼란에 빠졌습니다. 어떻게 해야 할까요? Aug 22, 2024 pm 04:37 PM

Editor | ScienceAI 제한된 임상 데이터를 기반으로 수백 개의 의료 알고리즘이 승인되었습니다. 과학자들은 누가 도구를 테스트해야 하며 최선의 방법은 무엇인지에 대해 토론하고 있습니다. 데빈 싱(Devin Singh)은 응급실에서 오랜 시간 치료를 기다리던 중 심장마비를 겪는 소아환자를 목격했고, 이를 계기로 대기시간을 단축하기 위해 AI 적용을 모색하게 됐다. SickKids 응급실의 분류 데이터를 사용하여 Singh과 동료들은 잠재적인 진단을 제공하고 테스트를 권장하는 일련의 AI 모델을 구축했습니다. 한 연구에 따르면 이러한 모델은 의사 방문 속도를 22.3% 단축하여 의료 검사가 필요한 환자당 결과 처리 속도를 거의 3시간 단축할 수 있는 것으로 나타났습니다. 그러나 인공지능 알고리즘의 연구 성공은 이를 입증할 뿐이다.

arXiv 논문은 '연발'로 게시될 수 있습니다. Stanford alphaXiv 토론 플랫폼은 온라인이며 LeCun은 이를 좋아합니다. arXiv 논문은 '연발'로 게시될 수 있습니다. Stanford alphaXiv 토론 플랫폼은 온라인이며 LeCun은 이를 좋아합니다. Aug 01, 2024 pm 05:18 PM

건배! 종이 토론이 말로만 진행된다면 어떤가요? 최근 스탠포드 대학교 학생들은 arXiv 논문에 대한 질문과 의견을 직접 게시할 수 있는 arXiv 논문에 대한 공개 토론 포럼인 alphaXiv를 만들었습니다. 웹사이트 링크: https://alphaxiv.org/ 실제로 이 웹사이트를 특별히 방문할 필요는 없습니다. URL에서 arXiv를 alphaXiv로 변경하면 alphaXiv 포럼에서 해당 논문을 바로 열 수 있습니다. 논문, 문장: 오른쪽 토론 영역에서 사용자는 저자에게 논문의 아이디어와 세부 사항에 대해 질문하는 질문을 게시할 수 있습니다. 예를 들어 다음과 같이 논문 내용에 대해 의견을 제시할 수도 있습니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

PRO | MoE 기반의 대형 모델이 더 주목받는 이유는 무엇인가요? PRO | MoE 기반의 대형 모델이 더 주목받는 이유는 무엇인가요? Aug 07, 2024 pm 07:08 PM

2023년에는 AI의 거의 모든 분야가 전례 없는 속도로 진화하고 있다. 동시에 AI는 구체화된 지능, 자율주행 등 핵심 트랙의 기술적 한계를 지속적으로 확장하고 있다. 멀티모달 추세 하에서 AI 대형 모델의 주류 아키텍처인 Transformer의 상황이 흔들릴까요? MoE(Mixed of Experts) 아키텍처를 기반으로 한 대형 모델 탐색이 업계에서 새로운 트렌드가 된 이유는 무엇입니까? 대형 비전 모델(LVM)이 일반 비전 분야에서 새로운 돌파구가 될 수 있습니까? ...지난 6개월 동안 공개된 본 사이트의 2023 PRO 회원 뉴스레터에서 위 분야의 기술 동향과 산업 변화에 대한 심층 분석을 제공하여 새로운 환경에서 귀하의 목표 달성에 도움이 되는 10가지 특별 해석을 선택했습니다. 년. 준비하세요. 이 해석은 2023년 50주차에 나온 것입니다.

See all articles