> 웹3.0 > 본문

입자 떼 최적화 알고리즘(PSO)의 Python 구현 소개

王林
풀어 주다: 2024-01-19 16:48:17
앞으로
757명이 탐색했습니다.

粒子群优化算法(PSO)是一种强大的元启发式算法,受群体行为启发,如鱼和鸟群。

粒子群算法概念

假设有一群鸟,它们都感到饥饿,正在寻找食物。这些鸟可以与计算系统中渴望资源的任务相关联。在它们所在的地方,只有一种食物颗粒,这种食物颗粒可以代表资源。

众所周知,任务很多,资源有限。因此,这已成为与特定计算环境中类似的条件。

现在,鸟类不知道食物颗粒隐藏在何处。在这种情况下,应该如何设计寻找食物颗粒的算法。

鸟类寻找食物的方式可以用来设计一种称为粒子群优化算法(PSO)的算法。如果每只鸟都试图独自寻找食物,可能会造成严重破坏并浪费大量时间。尽管鸟类不知道食物颗粒确切的位置,但它们知道与食物颗粒的距离。因此,最佳的寻找食物颗粒的方法是跟随离食物颗粒最近的鸟类。PSO算法模拟了鸟类的这种行为,并在计算环境中应用。这种算法的应用可以有效地解决一些优化问题。

Python实现粒子群算法

设定问题参数:维数(d)、下限(minx)、上限(maxx)

算法超参数:粒子数(N)、最大迭代次数(max_iter)、惰性(w)、粒子的认知(C1)、群体的社会影响(C2)

Step1:随机初始化N个粒子Xi(i=1,2,...,n)的Swarm种群

Step2:选择超参数值w,c1和c2

Step3:

For Iter in range(max_iter):
For i in range(N):
a.Compute new velocity of ith particle
swarm<i>.velocity=
w*swarm<i>.velocity+
r1*c1*(swarm<i>.bestPos-swarm<i>.position)+
r2*c2*(best_pos_swarm-swarm<i>.position)
b.If velocity is not in range[minx,max]then clip it
if swarm<i>.velocity&lt;minx:
swarm<i>.velocity=minx
elif swarm<i>.velocity[k]&gt;maxx:
swarm<i>.velocity[k]=maxx
c.Compute new position of ith particle using its new velocity
swarm<i>.position+=swarm<i>.velocity
d.Update new best of this particle and new best of Swarm

if swarm<i>.fitness&lt;swarm<i>.bestFitness:
swarm<i>.bestFitness=swarm<i>.fitness
swarm<i>.bestPos=swarm<i>.position

if swarm<i>.fitness&lt;best_fitness_swarm
best_fitness_swarm=swarm<i>.fitness
best_pos_swarm=swarm<i>.position
End-for
End-for
Step 4:Return best particle of Swarm
로그인 후 복사

위 내용은 입자 떼 최적화 알고리즘(PSO)의 Python 구현 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

원천:163.com
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿
회사 소개 부인 성명 Sitemap
PHP 중국어 웹사이트:공공복지 온라인 PHP 교육,PHP 학습자의 빠른 성장을 도와주세요!