MySQL redo log及recover过程浅析
写在前面:作者水平有限,欢迎不吝赐教,一切以最新源码为准。
InnoDB redo log
首先介绍下Innodb redo log是什么,为什么需要记录redo log,以及redo log的作用都有哪些。这些作为常识,只是为了本文完整。
InnoDB有buffer pool(简称bp)。bp是数据库页面的缓存,对InnoDB的任何修改操作都会首先在bp的page上进行,然后这样的页面将被标记为dirty并被放到专门的flush list上,后续将由master thread或专门的刷脏线程阶段性的将这些页面写入磁盘(disk or ssd)。这样的好处是避免每次写操作都操作磁盘导致大量的随机IO,阶段性的刷脏可以将多次对页面的修改merge成一次IO操作,同时异步写入也降低了访问的时延。然而,如果在dirty page还未刷入磁盘时,server非正常关闭,这些修改操作将会丢失,如果写入操作正在进行,甚至会由于损坏数据文件导致数据库不可用。为了避免上述问题的发生,Innodb将所有对页面的修改操作写入一个专门的文件,并在数据库启动时从此文件进行恢复操作,这个文件就是redo log file。这样的技术推迟了bp页面的刷新,从而提升了数据库的吞吐,有效的降低了访问时延。带来的问题是额外的写redo log操作的开销(顺序IO,当然很快),以及数据库启动时恢复操作所需的时间。
接下来将结合MySQL 5.6的代码看下Log文件的结构、生成过程以及数据库启动时的恢复流程。
Log文件结构Redo log文件包含一组log files,其会被循环使用。Redo log文件的大小和数目可以通过特定的参数设置,详见:innodb_log_file_size 和 innodb_log_files_in_group 。每个log文件有一个文件头,其代码在"storage/innobase/include/log0log.h"中,我们看下log文件头都记录了哪些信息:
669 /* Offsets of a log file header */670 #define LOG_GROUP_ID0 /* log group number */671 #define LOG_FILE_START_LSN4 /* lsn of the start of data in this672 log file */673 #define LOG_FILE_NO 12/* 4-byte archived log file number;674 this field is only defined in an675 archived log file */676 #define LOG_FILE_WAS_CREATED_BY_HOT_BACKUP 16677 /* a 32-byte field which contains678 the string 'ibbackup' and the679 creation time if the log file was680 created by ibbackup --restore;681 when mysqld is first time started682 on the restored database, it can683 print helpful info for the user */684 #define LOG_FILE_ARCH_COMPLETED OS_FILE_LOG_BLOCK_SIZE685 /* this 4-byte field is TRUE when686 the writing of an archived log file687 has been completed; this field is688 only defined in an archived log file */689 #define LOG_FILE_END_LSN(OS_FILE_LOG_BLOCK_SIZE + 4)690 /* lsn where the archived log file691 at least extends: actually the692 archived log file may extend to a693 later lsn, as long as it is within the694 same log block as this lsn; this field695 is defined only when an archived log696 file has been completely written */697 #define LOG_CHECKPOINT_1OS_FILE_LOG_BLOCK_SIZE698 /* first checkpoint field in the log699 header; we write alternately to the700 checkpoint fields when we make new701 checkpoints; this field is only defined702 in the first log file of a log group */703 #define LOG_CHECKPOINT_2(3 * OS_FILE_LOG_BLOCK_SIZE)704 /* second checkpoint field in the log705 header */706 #define LOG_FILE_HDR_SIZE (4 * OS_FILE_LOG_BLOCK_SIZE)
日志文件头共占用4个OS_FILE_LOG_BLOCK_SIZE的大小,这里对部分字段做简要介绍:
1. LOG_GROUP_ID 这个log文件所属的日志组,占用4个字节,当前都是0;
2. LOG_FILE_START_LSN 这个log文件记录的初始数据的lsn,占用8个字节;
3. LOG_FILE_WAS_CRATED_BY_HOT_BACKUP 备份程序所占用的字节数,共占用32字节,如xtrabackup在备份时会在xtrabackup_logfile文件中记录"xtrabackup backup_time";
4. LOG_CHECKPOINT_1/LOG_CHECKPOINT_2 两个记录InnoDB checkpoint信息的字段,分别从文件头的第二个和第四个block开始记录,只使用日志文件组的第一个日志文件。
这里多说两句,每次checkpoint后InnoDB都需要更新这两个字段的值,因此redo log的写入并非严格的顺序写;
每个log文件包含许多log records。log records将以OS_FILE_LOG_BLOCK_SIZE(默认值为512字节)为单位顺序写入log文件。每一条记录都有自己的LSN(log sequence number,表示从日志记录创建开始到特定的日志记录已经写入的字节数)。每个Log Block包含一个header段、一个tailer段,以及一组log records。
首先看下Log Block header。block header的开始4个字节是log block number,表示这是第几个block块。其是通过LSN计算得来,计算的函数是log_block_convert_lsn_to_no();接下来两个字节表示该block中已经有多少个字节被使用;再后边两个字节表示该block中作为一个新的MTR开始log record的偏移量,由于一个block中可以包含多个MTR记录的log,所以需要有记录表示此偏移量。再然后四个字节表示该block的checkpoint number。block trailer占用四个字节,表示此log block计算出的checksum值,用于正确性校验,MySQL5.6提供了若干种计算checksum的算法,这里不再赘述。我们可以结合代码中给出的注释,再了解下header和trailer的各个字段的含义。
580 /* Offsets of a log block header */581 #define LOG_BLOCK_HDR_NO0 /* block number which must be > 0 and582 is allowed to wrap around at 2G; the583 highest bit is set to 1 if this is the584 first log block in a log flush write585 segment */586 #define LOG_BLOCK_FLUSH_BIT_MASK 0x80000000UL587 /* mask used to get the highest bit in588 the preceding field */589 #define LOG_BLOCK_HDR_DATA_LEN4 /* number of bytes of log written to590 this block */591 #define LOG_BLOCK_FIRST_REC_GROUP 6 /* offset of the first start of an592 mtr log record group in this log block,593 0 if none; if the value is the same594 as LOG_BLOCK_HDR_DATA_LEN, it means595 that the first rec group has not yet596 been catenated to this log block, but597 if it will, it will start at this598 offset; an archive recovery can599 start parsing the log records starting600 from this offset in this log block,601 if value not 0 */602 #define LOG_BLOCK_CHECKPOINT_NO 8 /* 4 lower bytes of the value of603 log_sys->next_checkpoint_no when the604 log block was last written to: if the605 block has not yet been written full,606 this value is only updated before a607 log buffer flush */608 #define LOG_BLOCK_HDR_SIZE12/* size of the log block header in609 bytes */610611 /* Offsets of a log block trailer from the end of the block */612 #define LOG_BLOCK_CHECKSUM4 /* 4 byte checksum of the log block613 contents; in InnoDB versions614 <strong>Log 记录生成</strong><p>在介绍了log file和log block的结构后,需要描述log record在InnoDB内部是如何生成的,其“生命周期”是如何在内存中一步步流转并最终写入磁盘中的。这里涉及到两块内存缓冲,涉及到mtr/log_sys等内部结构,后续会一一介绍。</p><p>首先介绍下log_sys。log_sys是InnoDB在内存中保存的一个全局的结构体(struct名为log_t,global object名为log_sys),其维护了一块全局内存区域叫做log buffer(log_sys->buf),同时维护有若干lsn值等信息表示logging进行的状态。其在log_init函数中对所有的内部区域进行分配并对各个变量进行初始化。</p><p>log_t的结构体很大,这里不再粘出来,可以自行看"storage/innobase/include/log0log.h: struct log_t"。下边会对其中比较重要的字段值加以说明:</p>
log_sys->lsn | 接下来将要生成的log record使用此lsn的值 |
log_sys->flushed_do_disk_lsn |
redo log file已经被刷新到此lsn。比该lsn值小的日志记录已经被安全的记录在磁盘上 |
log_sys->write_lsn |
当前正在执行的写操作使用的临界lsn值; |
log_sys->current_flush_lsn |
当前正在执行的write + flush操作使用的临界lsn值,一般和log_sys->write_lsn相等; |
log_sys->buf | 内存中全局的log buffer,和每个mtr自己的buffer有所区别; |
log_sys->buf_size |
log_sys->buf的size |
log_sys->buf_free |
写入buffer的起始偏移量 |
log_sys->buf_next_to_write |
buffer中还未写到log file的起始偏移量。下次执行write+flush操作时,将会从此偏移量开始 |
log_sys->max_buf_free |
确定flush操作执行的时间点,当log_sys->buf_free比此值大时需要执行flush操作,具体看log_check_margins函数 |
接下来介绍mtr。mtr是mini-transactions的缩写。其在代码中对应的结构体是mtr_t,内部有一个局部buffer,会将一组log record集中起来,批量写入log buffer。mtr_t的结构体如下所示:
376 /* Mini-transaction handle and buffer */377 struct mtr_t{378 #ifdef UNIV_DEBUG379 ulint state;/*!<p>mtr_t::log --作为mtr的局部缓存,记录log record;</p><p>mtr_t::memo --包含了一组由此mtr涉及的操作造成的脏页列表,其会在mtr_commit执行后添加到flush list(参见mtr_memo_pop_all()函数);</p><p>mtr的一个典型应用场景如下:</p><p>1. 创建一个mtr_t类型的对象;</p><p>2. 执行mtr_start函数,此函数将会初始化mtr_t的字段,包括local buffer;</p><p>3. 在对内存bp中的page进行修改的同时,调用mlog_write_ulint类似的函数,生成redo log record,保存在local buffer中;</p><p>4. 执行mtr_commit函数,此函数将会将local buffer中的redo log拷贝到全局的log_sys->buffer,同时将脏页添加到flush list,供后续执行flush操作时使用;</p><p>mtr_commit函数调用mtr_log_reserve_and_write,进而调用log_write_low执行上述的拷贝操作。如果需要,此函数将会在log_sys->buf上创建一个新的log block,填充header、tailer以及计算checksum。</p><p>我们知道,为了保证数据库ACID特性中的原子性和持久性,理论上,在事务提交时,redo log应已经安全原子的写到磁盘文件之中。回到MySQL,文件内存中的log_sys->buffer何时以及如何写入磁盘中的redo log file与innodb_flush_log_at_trx_commit的设置密切相关。无论对于DBA还是MySQL的使用者对这个参数都已经相当熟悉,这里直接举例不同取值时log子系统是如何操作的。</p><p>innodb_flush_log_at_trx_commit=1/2。此时每次事务提交时都会写redo log,不同的是1对应write+flush,2只write,而由指定线程周期性的执行flush操作(周期多为1s)。执行write操作的函数是log_group_write_buf,其由log_write_up_to函数调用。一个典型的调用栈如下:</p><pre class="brush:php;toolbar:false">(trx_commit_in_memory()/trx_commit_complete_for_mysql()/trx_prepare() e.t.c)->trx_flush_log_if_needed()->trx_flush_log_if_needed_low()->log_write_up_to()->log_group_write_buf().
log_group_write_buf会再调用innodb封装的底层IO系统,其实现很复杂,这里不再展开。
innodb_flush_log_at_trx_commit=0时,每次事务commit不会再调用写redo log的函数,其写入逻辑都由master_thread完成,典型的调用栈如下:
srv_master_thread()->(srv_master_do_active_tasks() / srv_master_do_idle_tasks() / srv_master_do_shutdown_tasks())->srv_sync_log_buffer_in_background()->log_buffer_sync_in_background()->log_write_up_to()->... .
除此参数的影响之外,还有一些场景下要求刷新redo log文件。这里举几个例子:
1)为了保证write ahead logging(WAL),在刷新脏页前要求其对应的redo log已经写到磁盘,因此需要调用log_write_up_to函数;
2)为了循环利用log file,在log file空间不足时需要执行checkpoint(同步或异步),此时会通过调用log_checkpoint执行日志刷新操作。checkpoint会极大的影响数据库的性能,这也是log file不能设置的太小的主要原因;
3)在执行一些管理命令时要求刷新redo log文件,比如关闭数据库;
这里再简要总结一下一个log record的“生命周期”:
1. redo log record首先由mtr生成并保存在mtr的local buffer中。这里保存的redo log record需要记录数据库恢复阶段所需的所有信息,并且要求恢复操作是幂等的;
2. 当mtr_commit被调用后,redo log record被记录在全局内存的log buffer之中;
3. 根据需要(需要额外的空间?事务commit?),redo log buffer将会write(+flush)到磁盘上的redo log文件中,此时redo log已经被安全的保存起来;
4. mtr_commit执行时会给每个log record生成一个lsn,此lsn确定了其在log file中的位置;
5. lsn同时是联系redo log和dirty page的纽带,WAL要求redo log在刷脏前写入磁盘,同时,如果lsn相关联的页面都已经写入了磁盘,那么磁盘上redo log file中对应的log record空间可以被循环利用;
6. 数据库恢复阶段,使用被持久化的redo log来恢复数据库;
接下来介绍redo log在数据库恢复阶段所起的重要作用。
Log RecoveryInnoDB的recovery的函数入口是innobase_start_or_create_for_mysql,其在mysql启动时由innobase_init函数调用。我们接下来看下源码,在此函数内可以看到如下两个函数调用:
1. recv_recovery_from_checkpoint_start
2. recv_recovery_from_checkpoint_finish
代码注释中特意强调,在任何情况下,数据库启动时都会尝试执行recovery操作,这是作为函数启动时正常代码路径的一部分。
主要恢复工作在第一个函数内完成,第二个函数做扫尾清理工作。这里,直接看函数的注释可以清楚函数的具体工作是什么。
146 /** Wrapper for recv_recovery_from_checkpoint_start_func().147 Recovers from a checkpoint. When this function returns, the database is able148 to start processing of new user transactions, but the function149 recv_recovery_from_checkpoint_finish should be called later to complete150 the recovery and free the resources used in it.151 @param type in: LOG_CHECKPOINT or LOG_ARCHIVE152 @param limin: recover up to this log sequence number if possible153 @param minin: minimum flushed log sequence number from data files154 @param maxin: maximum flushed log sequence number from data files155 @return error code or DB_SUCCESS */156 # define recv_recovery_from_checkpoint_start(type,lim,min,max)/157 recv_recovery_from_checkpoint_start_func(type,lim,min,max)
与log_t结构体相对应,恢复阶段也有一个结构体,叫做recv_sys_t,这个结构体在recv_recovery_from_checkpoint_start函数中通过recv_sys_create和recv_sys_init两个函数初始化。recv_sys_t中同样有几个和lsn相关的字段,这里做下介绍。
recv_sys->limit_lsn |
恢复应该执行到的最大的LSN值,这里赋值为LSN_MAX(uint64_t的最大值) |
recv_sys->parse_start_lsn |
恢复解析日志阶段所使用的最起始的LSN值,这里等于最后一次执行checkpoint对应的LSN值 |
recv_sys->scanned_lsn |
当前扫描到的LSN值 |
recv_sys->recovered_lsn |
当前恢复到的LSN值,此值小于等于recv_sys->scanned_lsn |
在获取start_lsn后,recv_recovery_from_checkpoint_start函数调用recv_group_scan_log_recs函数读取及解析log records。
我们重点看下recv_group_scan_log_recs函数:
2908 /*******************************************************//**2909 Scans log from a buffer and stores new log data to the parsing buffer. Parses2910 and hashes the log records if new data found. */2911 static2912 void2913 recv_group_scan_log_recs(2914 /*=====================*/2915 log_group_t*group,/*!buf,2934group, start_lsn, end_lsn);29352936 finished = recv_scan_log_recs(2937 (buf_pool_get_n_pages()2938 - (recv_n_pool_free_frames * srv_buf_pool_instances))2939 * UNIV_PAGE_SIZE,2940 TRUE, log_sys->buf, RECV_SCAN_SIZE,2941 start_lsn, contiguous_lsn, group_scanned_lsn);2942 start_lsn = end_lsn;2943 }
此函数内部是一个while循环。log_group_read_log_seg函数首先将log record读取到一个内存缓冲区中(这里是log_sys->buf),接着调用recv_scan_log_recs函数用来解析这些log record。解析过程会计算log block的checksum以及block no和lsn是否对应。解析过程完成后,解析结果会存入recv_sys->addr_hash维护的hash表中。这个hash表的key是通过space id和page number计算得到,value是一组应用到指定页面的经过解析后的log record,这里不再展开。
上述步骤完成后,recv_apply_hashed_log_recs函数可能会在recv_group_scan_log_recs或recv_recovery_from_checkpoint_start函数中调用,此函数将addr_hash中的log应用到特定的page上。此函数会调用recv_recover_page函数做真正的page recovery操作,此时会判断页面的lsn要比log record的lsn小。
105 /** Wrapper for recv_recover_page_func().106 Applies the hashed log records to the page, if the page lsn is less than the107 lsn of a log record. This can be called when a buffer page has just been108 read in, or also for a page already in the buffer pool.109 @param jriin: TRUE if just read in (the i/o handler calls this for110 a freshly read page)111 @param blockin/out: the buffer block112 */113 # define recv_recover_page(jri, block)recv_recover_page_func(jri, block)
如上就是整个页面的恢复流程。
附一个问题环节,后续会将redo log相关的问题记录在这里。
1. Q: Log_file, Log_block, Log_record的关系?
A: Log_file由一组log block组成,每个log block都是固定大小的。log block中除了header/tailer以外的字节都是记录的log record
2. Q: 是不是每一次的Commit,产生的应该是一个Log_block ?
A: 这个不一定的。写入log_block由mtr_commit确定,而不是事务提交确定。看log record大小,如果大小不需要跨log block,就会继续在当前的log block中写 。
3. Q: Log_record的结构又是怎么样的呢?
A: 这个结构很多,也没有细研究,具体看后边登博图中的简要介绍吧;
4. Q: 每个Block应该有下一个Block的偏移吗,还是顺序即可,还是记录下一个的Block_number
A: block都是固定大小的,顺序写的
5. Q: 那如何知道这个Block是不是完整的,是不是依赖下一个Block呢?
A: block开始有2个字节记录 此block中第一个mtr开始的位置,如果这个值是0,证明还是上一个block的同一个mtr。
6. Q: 一个事务是不是需要多个mtr_commit
A: 是的。mtr的m == mini;
7. Q: 这些Log_block是不是在Commit的时候一起刷到当中?
A: mtr_commit时会写入log buffer,具体什么时候写到log file就不一定了
8. Q: 那LSN是如何写的呢?
A: lsn就是相当于在log file中的位置,那么在写入log buffer时就会确定这个lsn的大小了 。当前只有一个log buffer,在log buffer中的位置和在log file中的位置是一致的
9. Q: 那我Commit的时候做什么事情呢?
A: 可能写log 、也可能不写,由innodb_flush_log_at_trx_commit这个参数决定啊
10. Q: 这两个值是干嘛用的: LOG_CHECKPOINT_1/LOG_CHECKPOINT_2
A: 这两个可以理解为log file头信息的一部分(占用文件头第二和第四个block),每次执行checkpoint都需要更新这两个字段,后续恢复时,每个页面对应lsn中比这个checkpoint值小的,认为是已经写入了,不需要再恢复
文章最后,将网易杭研院何登成博士-登博博客上的一个log block的结构图放在这,再画图也不会比登博这张图画的更清晰了,版权属于登博。


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Pinduoduo 소프트웨어는 좋은 제품을 많이 제공하고 언제 어디서나 구입할 수 있으며 각 제품의 품질은 엄격하게 통제되고 모든 제품은 정품이며 우대 쇼핑 할인이 많아 누구나 온라인 쇼핑을 할 수 있습니다. 온라인으로 로그인하려면 휴대폰 번호를 입력하고, 온라인으로 여러 배송 주소와 연락처 정보를 추가하고, 다양한 카테고리의 제품 섹션을 언제든지 확인하고 구매하고 주문하세요. 집을 떠나지 않고도 편리함을 경험할 수 있습니다. 온라인 쇼핑 서비스를 이용하면 구매한 상품을 포함한 모든 구매 기록을 볼 수 있으며, 수십 개의 쇼핑 빨간 봉투와 쿠폰을 무료로 받을 수 있습니다. 이제 편집자가 자세한 온라인 정보를 제공합니다. Pinduoduo 사용자는 구매한 제품 기록을 볼 수 있습니다. 1. 휴대폰을 열고 핀둬둬 아이콘을 클릭하세요.

자율주행 궤적 예측은 차량의 주행 과정에서 발생하는 다양한 데이터를 분석하여 차량의 향후 주행 궤적을 예측하는 것을 의미합니다. 자율주행의 핵심 모듈인 궤도 예측의 품질은 후속 계획 제어에 매우 중요합니다. 궤적 예측 작업은 풍부한 기술 스택을 보유하고 있으며 자율 주행 동적/정적 인식, 고정밀 지도, 차선, 신경망 아키텍처(CNN&GNN&Transformer) 기술 등에 대한 익숙함이 필요합니다. 시작하기가 매우 어렵습니다! 많은 팬들은 가능한 한 빨리 궤도 예측을 시작하여 함정을 피하기를 희망합니다. 오늘은 궤도 예측을 위한 몇 가지 일반적인 문제와 입문 학습 방법을 살펴보겠습니다. 관련 지식 입문 1. 미리보기 논문이 순서대로 되어 있나요? A: 먼저 설문조사를 보세요, p

StableDiffusion3의 논문이 드디어 나왔습니다! 이 모델은 2주 전에 출시되었으며 Sora와 동일한 DiT(DiffusionTransformer) 아키텍처를 사용합니다. 출시되자마자 큰 화제를 불러일으켰습니다. 이전 버전과 비교하여 StableDiffusion3에서 생성된 이미지의 품질이 크게 향상되었습니다. 이제 다중 테마 프롬프트를 지원하고 텍스트 쓰기 효과도 향상되었으며 더 이상 잘못된 문자가 표시되지 않습니다. StabilityAI는 StableDiffusion3이 800M에서 8B 범위의 매개변수 크기를 가진 일련의 모델임을 지적했습니다. 이 매개변수 범위는 모델이 많은 휴대용 장치에서 직접 실행될 수 있어 AI 사용이 크게 줄어든다는 것을 의미합니다.

첫 번째 파일럿 및 주요 기사에서는 주로 자율 주행 기술에서 일반적으로 사용되는 여러 좌표계를 소개하고 이들 간의 상관 관계 및 변환을 완료하고 최종적으로 통합 환경 모델을 구축하는 방법을 소개합니다. 여기서 초점은 차량에서 카메라 강체로의 변환(외부 매개변수), 카메라에서 이미지로의 변환(내부 매개변수), 이미지에서 픽셀 단위로의 변환을 이해하는 것입니다. 3D에서 2D로의 변환에는 해당 왜곡, 변환 등이 포함됩니다. 요점: 차량 좌표계와 카메라 본체 좌표계를 다시 작성해야 합니다. 평면 좌표계와 픽셀 좌표계 난이도: 이미지 평면에서 왜곡 제거와 왜곡 추가를 모두 고려해야 합니다. 2. 소개 좌표계에는 픽셀 평면 좌표계(u, v), 이미지 좌표계(x, y), 카메라 좌표계(), 월드 좌표계() 등 총 4가지 비전 시스템이 있습니다. 각 좌표계 사이에는 관계가 있으며,

Flask를 설치하는 방법과 개인 블로그를 빠르게 구축하는 방법을 처음부터 차근차근 가르쳐드리겠습니다. 글쓰기를 좋아하는 사람으로서 개인 블로그를 갖는 것은 매우 중요합니다. 경량 Python 웹 프레임워크인 Flask를 사용하면 간단하고 완전한 기능을 갖춘 개인 블로그를 빠르게 구축할 수 있습니다. 이 기사에서는 처음부터 시작하여 Flask를 설치하고 개인 블로그를 빠르게 구축하는 방법을 단계별로 가르쳐 드리겠습니다. 1단계: Python 및 pip 설치 시작하기 전에 먼저 Python 및 pi를 설치해야 합니다.

본 논문에서는 자율 주행에서 다양한 시야각(예: 원근 및 조감도)에서 객체를 정확하게 감지하는 문제, 특히 원근(PV) 공간에서 조감(BEV) 공간으로 기능을 효과적으로 변환하는 방법을 탐구합니다. VT(Visual Transformation) 모듈을 통해 구현됩니다. 기존 방법은 크게 2D에서 3D로, 3D에서 2D로 변환하는 두 가지 전략으로 나뉩니다. 2D에서 3D로의 방법은 깊이 확률을 예측하여 조밀한 2D 특징을 개선하지만, 특히 먼 영역에서는 깊이 예측의 본질적인 불확실성으로 인해 부정확성이 발생할 수 있습니다. 3D에서 2D로의 방법은 일반적으로 3D 쿼리를 사용하여 2D 기능을 샘플링하고 Transformer를 통해 3D와 2D 기능 간의 대응에 대한 주의 가중치를 학습하므로 계산 및 배포 시간이 늘어납니다.

저자 개인 생각 중 일부 자율주행 분야에서는 BEV 기반의 하위 작업/End-to-End 솔루션 개발로 인해 고품질의 다시점 훈련 데이터와 그에 따른 시뮬레이션 장면 구축이 점점 더 중요해지고 있습니다. 현재 작업의 문제점에 대응하여 "고품질"은 세 가지 측면으로 분리될 수 있습니다. 다양한 차원의 롱테일 시나리오(예: 장애물 데이터의 근거리 차량 및 자동차 절단 과정의 정확한 방향 각도) 곡률이 다른 곡선이나 경사로/병합/병합 등 캡처하기 어려운 차선 데이터. 이는 종종 비용이 많이 드는 대량의 데이터 수집과 복잡한 데이터 마이닝 전략에 의존합니다. 3D 진정한 가치 - 매우 일관된 이미지: 현재 BEV 데이터 수집은 센서 설치/보정, 고정밀 지도 및 재구성 알고리즘 자체의 오류에 의해 영향을 받는 경우가 많습니다. 이것이 나를 이끌었다

갑자기 발견한 19년 된 논문 GSLAM: A General SLAM Framework and Benchmark 오픈소스 코드: https://github.com/zdzhaoyong/GSLAM 전문으로 직접 가서 이 작품의 퀄리티를 느껴보세요~1 Abstract SLAM technology 최근 많은 성공을 거두었으며 많은 첨단 기술 기업의 관심을 끌었습니다. 그러나 기존 또는 신흥 알고리즘에 대한 인터페이스를 사용하여 속도, 견고성 및 이식성에 대한 벤치마크를 효과적으로 수행하는 방법은 여전히 문제로 남아 있습니다. 본 논문에서는 평가 기능을 제공할 뿐만 아니라 연구자에게 자체 SLAM 시스템을 신속하게 개발할 수 있는 유용한 방법을 제공하는 GSLAM이라는 새로운 SLAM 플랫폼을 제안합니다.
