전이 학습의 전략, 단계, 차이점 및 개념을 이해합니다.
전이 학습은 기존 기계 학습 작업에서 훈련된 모델을 사용하여 새로운 작업을 해결하는 방법입니다. 기존 모델에 대한 지식을 새로운 작업으로 이전하여 새로운 작업에 필요한 훈련 데이터의 양을 줄일 수 있습니다. 최근에는 자연어 처리, 이미지 인식 등의 분야에서 전이학습이 널리 활용되고 있다. 이번 글에서는 전이학습의 개념과 원리를 자세히 소개하겠습니다.
전통적인 전이 학습 전략
작업 영역과 데이터 가용성에 따라 다양한 전이 학습 전략과 기술을 적용합니다.
1. 귀납적 전이 학습
귀납적 전이 학습은 모델이 처리하는 특정 작업이 다르지만 소스 도메인과 대상 도메인이 동일해야 합니다. 이러한 알고리즘은 소스 모델에 대한 지식을 활용하고 이를 적용하여 대상 작업을 개선하려고 시도합니다. 사전 훈련된 모델은 이미 도메인 기능에 대한 전문 지식을 갖추고 있으므로 처음부터 훈련하는 것보다 더 나은 시작점이 됩니다.
귀납적 전이 학습은 소스 도메인에 레이블이 지정된 데이터가 포함되어 있는지 여부에 따라 두 개의 하위 범주로 더 나뉩니다. 여기에는 각각 다중 작업 학습과 자기 주도 학습이 포함됩니다.
2. 전달적 전이 학습
소스 작업과 대상 작업의 필드가 정확히 동일하지는 않지만 서로 관련되어 있는 시나리오에서는 전달적 전이 학습 전략을 사용할 수 있습니다. 소스 작업과 대상 작업 간에 유사점을 그릴 수 있습니다. 이러한 시나리오는 일반적으로 원본 도메인에 레이블이 지정된 대량의 데이터가 있고 대상 도메인에는 레이블이 지정되지 않은 데이터만 있습니다.
3. 비지도 전이 학습
비지도 전이 학습은 귀납적 전이 학습과 유사합니다. 유일한 차이점은 알고리즘이 감독되지 않는 작업에 초점을 맞추고 소스 및 대상 작업 모두에 레이블이 지정되지 않은 데이터 세트를 포함한다는 것입니다.
4. 도메인 유사성을 기반으로 하고 훈련 데이터 샘플 유형에 독립적인 전략
- 동형 전이 학습
동일한 특성을 가진 도메인을 처리하기 위한 동형 전이 학습 방법이 개발 및 제안됩니다. 우주상황. 동형 전이 학습에서는 영역의 한계 분포가 약간만 다릅니다. 이러한 방법은 표본 선택 편향 또는 공변량 이동을 수정하여 영역을 조정합니다.
- 이종 전이 학습
이종 전이 학습 방법은 서로 다른 기능 공간과 서로 다른 데이터 분포 및 레이블 공간과 같은 기타 문제가 있는 소스 및 대상 도메인의 문제를 해결하도록 설계되었습니다. 이종 전이 학습은 언어 간 텍스트 분류, 텍스트-이미지 분류 등과 같은 도메인 간 작업에 적용됩니다.
전이 학습 6단계
1. 사전 학습된 모델 획득
첫 번째 단계는 작업에 따라 학습의 기초로 유지하려는 사전 학습된 모델을 선택하는 것입니다. . 전이 학습을 위해서는 사전 훈련된 소스 모델에 대한 지식과 대상 작업 영역 간의 강력한 상관관계가 호환되어야 합니다.
2. 기본 모델 만들기
기본 모델은 첫 번째 단계에서 작업과 밀접하게 관련된 아키텍처를 선택하는 것보다 최종 출력 레이어에 더 많은 뉴런이 있는 상황이 있을 수 있습니다. 사용 사례에서는 필요한 수량입니다. 이 경우 최종 출력 레이어를 제거하고 이에 따라 변경해야 합니다.
3. 시작 레이어 고정
사전 학습된 모델의 시작 레이어를 고정하는 것은 모델이 기본 기능을 학습하지 못하도록 하는 데 중요합니다. 초기 레이어를 고정하지 않으면 발생한 모든 학습이 손실됩니다. 이는 모델을 처음부터 훈련하는 것과 다르지 않아 시간, 리소스 등이 낭비됩니다.
4. 새로운 훈련 가능한 레이어 추가
기본 모델에서 재사용되는 유일한 지식은 특징 추출 레이어입니다. 모델의 특수 작업을 예측하려면 특징 추출 레이어 위에 추가 레이어가 필요합니다. 이는 일반적으로 최종 출력 레이어입니다.
5. 새 레이어 훈련
사전 훈련된 모델의 최종 출력이 우리가 원하는 모델 출력과 다를 가능성이 매우 높으며, 이 경우 모델은 새로운 출력으로 훈련되어야 합니다. 층.
6. 모델의 성능을 향상하기 위해 모델을 미세 조정
합니다. 미세 조정에는 기본 모델의 일부를 고정 해제하고 매우 낮은 학습 속도로 전체 데이터 세트에 대해 전체 모델을 다시 교육하는 작업이 포함됩니다. 학습률이 낮으면 과적합을 방지하면서 새로운 데이터 세트에 대한 모델 성능이 향상됩니다.
기존 머신 러닝과 전이 학습의 차이점
1. 기존 머신 러닝 모델은 처음부터 학습해야 하며, 고성능을 달성하려면 많은 양의 계산과 데이터가 필요합니다. 반면에 전이 학습은 계산적으로 효율적이며 작은 데이터 세트를 사용하여 더 나은 결과를 얻는 데 도움이 됩니다.
2. 기존 머신러닝은 격리된 학습 방법을 사용하며, 각 모델은 특정 목적을 위해 독립적으로 학습되며 과거 지식에 의존하지 않습니다. 이와 대조적으로 전이 학습은 사전 훈련된 모델에서 얻은 지식을 사용하여 작업을 처리합니다.
3. 전이 학습 모델은 기존 ML 모델보다 더 빠르게 최적의 성능에 도달합니다. 이는 이전에 훈련된 모델의 지식(특성, 가중치 등)을 활용하는 모델이 이미 이러한 특성을 이해하고 있기 때문입니다. 신경망을 처음부터 훈련시키는 것보다 빠릅니다.
심층 전이 학습의 개념
많은 모델의 사전 훈련된 신경망과 모델이 딥 러닝의 맥락에서 전이 학습의 기초를 형성하는데, 이를 심층 전이 학습이라고 합니다.
딥러닝 모델의 프로세스를 이해하려면 해당 모델의 구성 요소를 이해해야 합니다. 딥 러닝 시스템은 다양한 계층에서 다양한 기능을 학습할 수 있는 계층형 아키텍처입니다. 초기 레이어는 더 높은 수준의 기능을 컴파일하며, 네트워크에 더 깊이 들어가면서 세분화된 기능으로 범위가 좁아집니다.
이 레이어는 마지막 레이어에 연결되어 최종 출력을 얻습니다. 이는 마지막 레이어를 다른 작업을 위한 고정 특징 추출기로 사용하지 않고도 널리 사용되는 사전 훈련된 네트워크를 사용하는 데 한계가 있습니다. 핵심 아이디어는 사전 훈련된 모델의 가중치 계층을 활용하여 특징을 추출하되, 새로운 작업에 대한 새로운 데이터로 훈련하는 동안 모델의 가중치를 업데이트하지 않는 것입니다.
심층 신경망은 조정 가능한 하이퍼파라미터가 많은 계층 구조입니다. 초기 레이어의 역할은 일반적인 기능을 캡처하는 반면, 이후 레이어는 당면한 명시적인 작업에 더 중점을 둡니다. 기본 모델의 고차 기능 표현을 미세 조정하여 특정 작업과 더 관련되도록 만드는 것이 합리적입니다. 훈련 중에 일부 동결을 유지하면서 모델의 특정 계층을 다시 훈련할 수 있습니다.
모델 성능을 더욱 향상시키는 방법은 분류기를 훈련하는 동안 사전 훈련된 모델의 최상위 계층에 대한 가중치를 다시 훈련하거나 미세 조정하는 것입니다. 이렇게 하면 모델의 소스 작업에서 학습된 공통 기능 맵에서 가중치가 업데이트됩니다. 미세 조정을 통해 모델은 과거 지식을 적용하고 대상 도메인에서 무언가를 다시 학습할 수 있습니다.
또한 전체 모델보다는 상위 레이어 몇 개를 미세 조정하는 것이 좋습니다. 처음 몇 개의 레이어는 거의 모든 유형의 데이터에 일반화할 수 있는 기본적인 일반 기능을 학습합니다. 미세 조정의 목적은 일반적인 학습을 재정의하는 것이 아니라 이러한 특수 기능을 새로운 데이터 세트에 적용하는 것입니다.
위 내용은 전이 학습의 전략, 단계, 차이점 및 개념을 이해합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이미지 주석은 이미지 콘텐츠에 더 깊은 의미와 설명을 제공하기 위해 이미지에 레이블이나 설명 정보를 연결하는 프로세스입니다. 이 프로세스는 비전 모델을 훈련하여 이미지의 개별 요소를 보다 정확하게 식별하는 데 도움이 되는 기계 학습에 매우 중요합니다. 이미지에 주석을 추가함으로써 컴퓨터는 이미지 뒤의 의미와 맥락을 이해할 수 있으므로 이미지 내용을 이해하고 분석하는 능력이 향상됩니다. 이미지 주석은 컴퓨터 비전, 자연어 처리, 그래프 비전 모델 등 다양한 분야를 포괄하여 차량이 도로의 장애물을 식별하도록 지원하는 등 광범위한 애플리케이션을 보유하고 있습니다. 의료영상인식을 통한 질병진단. 이 기사에서는 주로 더 나은 오픈 소스 및 무료 이미지 주석 도구를 권장합니다. 1.마케센스

기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

일반인의 관점에서 보면 기계 학습 모델은 입력 데이터를 예측된 출력에 매핑하는 수학적 함수입니다. 보다 구체적으로, 기계 학습 모델은 예측 출력과 실제 레이블 사이의 오류를 최소화하기 위해 훈련 데이터로부터 학습하여 모델 매개변수를 조정하는 수학적 함수입니다. 기계 학습에는 로지스틱 회귀 모델, 의사결정 트리 모델, 지원 벡터 머신 모델 등 다양한 모델이 있습니다. 각 모델에는 적용 가능한 데이터 유형과 문제 유형이 있습니다. 동시에, 서로 다른 모델 간에는 많은 공통점이 있거나 모델 발전을 위한 숨겨진 경로가 있습니다. 연결주의 퍼셉트론을 예로 들면, 퍼셉트론의 은닉층 수를 늘려 심층 신경망으로 변환할 수 있습니다. 퍼셉트론에 커널 함수를 추가하면 SVM으로 변환할 수 있다. 이 하나

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.
