기술 주변기기 일체 포함 모델 없는 메타 학습 알고리즘 - MAML 메타 학습 알고리즘

모델 없는 메타 학습 알고리즘 - MAML 메타 학습 알고리즘

Jan 22, 2024 pm 04:42 PM
기계 학습 딥러닝

모델 없는 메타 학습 알고리즘 - MAML 메타 학습 알고리즘

메타 학습이란 새로운 작업에 빠르게 적응하기 위해 여러 작업에서 공통적인 특징을 추출하여 학습 방법을 탐구하는 과정을 말합니다. MAML(Related Model-Agnostic Meta-Learning)은 사전 지식 없이 다중 작업 메타학습을 수행할 수 있는 알고리즘입니다. MAML은 여러 관련 작업을 반복적으로 최적화하여 모델 초기화 매개변수를 학습하므로 모델이 새로운 작업에 빠르게 적응할 수 있습니다. MAML의 핵심 아이디어는 경사하강법을 통해 모델 매개변수를 조정하여 새로운 작업에 대한 손실을 최소화하는 것입니다. 이 방법을 사용하면 적은 수의 샘플로 모델을 빠르게 학습할 수 있으며 일반화 능력이 좋습니다. MAML은 이미지 분류, 음성 인식, 로봇 제어 등 다양한 기계 학습 작업에 널리 사용되어 인상적인 결과를 얻었습니다. MAML과 같은 메타 학습 알고리즘을 통해 우리

MAML의 기본 아이디어는 모델의 초기화 매개 변수를 얻기 위해 대규모 작업 세트에 대해 메타 학습을 수행하여 모델이 새로운 작업에 빠르게 수렴할 수 있도록 하는 것입니다. 작업. 구체적으로 MAML의 모델은 경사하강법 알고리즘을 통해 업데이트할 수 있는 신경망입니다. 업데이트 프로세스는 두 단계로 나눌 수 있습니다. 먼저 대규모 작업 세트에 대해 경사하강법을 수행하여 각 작업의 업데이트 매개변수를 얻은 다음, 이러한 업데이트 매개변수의 가중 평균을 통해 모델의 초기화 매개변수를 얻습니다. 이런 방식으로 모델은 새로운 작업에 대해 적은 수의 경사 하강 단계를 통해 새로운 작업의 특성에 빠르게 적응할 수 있으며 이를 통해 빠른 수렴을 달성할 수 있습니다.

먼저, 각 작업의 훈련 세트에 경사하강법 알고리즘을 사용하여 모델의 매개변수를 업데이트하여 작업에 대한 최적의 매개변수를 얻습니다. 우리는 특정 단계 수에 대해서만 경사하강법을 수행했을 뿐 완전한 훈련을 수행하지는 않았다는 점에 유의해야 합니다. 이는 가능한 한 빨리 모델을 새로운 작업에 적응시키는 것이 목표이기 때문에 약간의 훈련만 필요하기 때문입니다.

새 작업에서는 첫 번째 단계에서 얻은 매개변수를 초기 매개변수로 사용하고 훈련 세트에 대해 경사하강법을 수행하여 최적의 매개변수를 얻을 수 있습니다. 이런 방식으로 새로운 작업의 특성에 더 빠르게 적응하고 모델 성능을 향상시킬 수 있습니다.

이 방법을 통해 공통 초기 매개변수를 얻을 수 있어 모델이 새로운 작업에 빠르게 적응할 수 있습니다. 또한 MAML은 그라디언트 업데이트를 통해 최적화되어 모델 성능을 더욱 향상시킬 수도 있습니다.

다음은 이미지 분류 작업을 위한 메타 학습을 위해 MAML을 사용한 응용 예입니다. 이 작업에서는 적은 수의 샘플을 통해 빠르게 학습하고 분류할 수 있으며, 새로운 작업에 빠르게 적응할 수 있는 모델을 훈련해야 합니다.

이 예에서는 교육 및 테스트에 mini-ImageNet 데이터 세트를 사용할 수 있습니다. 데이터 세트에는 600개의 이미지 카테고리가 포함되어 있으며 각 카테고리마다 100개의 훈련 이미지, 20개의 검증 이미지, 20개의 테스트 이미지가 있습니다. 이 예에서는 각 카테고리의 100개의 훈련 이미지를 하나의 작업으로 간주할 수 있습니다. 각 작업에 대한 소량의 훈련으로 모델을 훈련하고 새로운 작업에 빠르게 적응할 수 있도록 모델을 설계해야 합니다.

다음은 PyTorch를 사용하여 구현한 MAML 알고리즘의 코드 예제입니다.

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader

class MAML(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, num_layers):
        super(MAML, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x, h):
        out, h = self.lstm(x, h)
        out = self.fc(out[:,-1,:])
        return out, h

def train(model, optimizer, train_data, num_updates=5):
    for i, task in enumerate(train_data):
        x, y = task
        x = x.unsqueeze(0)
        y = y.unsqueeze(0)
        h = None
        for j in range(num_updates):
            optimizer.zero_grad()
            outputs, h = model(x, h)
            loss = nn.CrossEntropyLoss()(outputs, y)
            loss.backward()
            optimizer.step()
        if i % 10 == 0:
            print("Training task {}: loss = {}".format(i, loss.item()))

def test(model, test_data):
    num_correct = 0
    num_total = 0
    for task in test_data:
        x, y = task
        x = x.unsqueeze(0)
        y = y.unsqueeze(0)
        h = None
        outputs, h = model(x, h)
        _, predicted = torch.max(outputs.data, 1)
        num_correct += (predicted == y).sum().item()
        num_total += y.size(1)
    acc = num_correct / num_total
    print("Test accuracy: {}".format(acc))

# Load the mini-ImageNet dataset
train_data = DataLoader(...)
test_data = DataLoader(...)

input_size = ...
hidden_size = ...
output_size = ...
num_layers = ...

# Initialize the MAML model
model = MAML(input_size, hidden_size, output_size, num_layers)

# Define the optimizer
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Train the MAML model
for epoch in range(10):
    train(model, optimizer, train_data)
    test(model, test_data)
로그인 후 복사

이 코드에서는 먼저 LSTM 레이어와 완전 연결 레이어로 구성된 MAML 모델을 정의합니다. 훈련 과정에서 먼저 각 작업의 데이터 세트를 샘플로 처리한 다음 여러 경사하강법을 통해 모델의 매개변수를 업데이트합니다. 테스트 과정에서 우리는 예측을 위해 테스트 데이터 세트를 모델에 직접 입력하고 정확도를 계산합니다.

이 예에서는 훈련 세트에 대해 소량의 훈련을 수행하여 모델이 새로운 작업에 빠르게 적응할 수 있도록 MAML 알고리즘을 적용하는 방법을 보여줍니다. 동시에 모델의 성능을 향상시키기 위해 기울기 업데이트를 통해 알고리즘을 최적화할 수도 있습니다.

위 내용은 모델 없는 메타 학습 알고리즘 - MAML 메타 학습 알고리즘의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. 이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. Jun 01, 2024 am 10:58 AM

기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. May 30, 2024 am 09:35 AM

이전에 작성했던 오늘은 딥 러닝 기술이 복잡한 환경에서 비전 기반 SLAM(동시 위치 파악 및 매핑)의 성능을 향상할 수 있는 방법에 대해 논의합니다. 심층 특징 추출과 깊이 일치 방법을 결합하여 저조도 조건, 동적 조명, 질감이 약한 영역 및 심한 지터와 같은 까다로운 시나리오에서 적응을 향상하도록 설계된 다목적 하이브리드 시각적 SLAM 시스템을 소개합니다. 우리 시스템은 확장 단안, 스테레오, 단안 관성 및 스테레오 관성 구성을 포함한 여러 모드를 지원합니다. 또한 시각적 SLAM을 딥러닝 방법과 결합하여 다른 연구에 영감을 주는 방법도 분석합니다. 공개 데이터 세트 및 자체 샘플링 데이터에 대한 광범위한 실험을 통해 위치 정확도 및 추적 견고성 측면에서 SL-SLAM의 우수성을 입증합니다.

학습 곡선을 통해 과적합과 과소적합 식별 학습 곡선을 통해 과적합과 과소적합 식별 Apr 29, 2024 pm 06:50 PM

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

우주탐사 및 인간정주공학 분야 인공지능의 진화 우주탐사 및 인간정주공학 분야 인공지능의 진화 Apr 29, 2024 pm 03:25 PM

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 Jun 03, 2024 pm 01:25 PM

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

설명 가능한 AI: 복잡한 AI/ML 모델 설명 설명 가능한 AI: 복잡한 AI/ML 모델 설명 Jun 03, 2024 pm 10:08 PM

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

Flash Attention은 안정적인가요? Meta와 Harvard는 모델 중량 편차가 ​​수십 배로 변동한다는 사실을 발견했습니다. Flash Attention은 안정적인가요? Meta와 Harvard는 모델 중량 편차가 ​​수십 배로 변동한다는 사실을 발견했습니다. May 30, 2024 pm 01:24 PM

MetaFAIR는 대규모 기계 학습을 수행할 때 생성되는 데이터 편향을 최적화하기 위한 새로운 연구 프레임워크를 제공하기 위해 Harvard와 협력했습니다. 대규모 언어 모델을 훈련하는 데는 수개월이 걸리고 수백 또는 수천 개의 GPU를 사용하는 것으로 알려져 있습니다. LLaMA270B 모델을 예로 들면, 훈련에는 총 1,720,320 GPU 시간이 필요합니다. 대규모 모델을 교육하면 이러한 워크로드의 규모와 복잡성으로 인해 고유한 체계적 문제가 발생합니다. 최근 많은 기관에서 SOTA 생성 AI 모델을 훈련할 때 훈련 프로세스의 불안정성을 보고했습니다. 이는 일반적으로 손실 급증의 형태로 나타납니다. 예를 들어 Google의 PaLM 모델은 훈련 과정에서 최대 20번의 손실 급증을 경험했습니다. 수치 편향은 이러한 훈련 부정확성의 근본 원인입니다.

See all articles