기술 주변기기 일체 포함 얕은 피처와 깊은 피처를 결합한 실제 적용 사례

얕은 피처와 깊은 피처를 결합한 실제 적용 사례

Jan 22, 2024 pm 05:00 PM
딥러닝 컴퓨터 비전 이미지 처리 인공 신경망

얕은 피처와 깊은 피처를 결합한 실제 적용 사례

딥 러닝은 컴퓨터 비전 분야에서 큰 성공을 거두었으며, 중요한 발전 중 하나는 이미지 분류에 심층 합성곱 신경망(CNN)을 사용하는 것입니다. 그러나 심층 CNN에는 일반적으로 대량의 레이블이 지정된 데이터와 컴퓨팅 리소스가 필요합니다. 계산 리소스와 레이블이 지정된 데이터에 대한 수요를 줄이기 위해 연구자들은 얕은 특징과 깊은 특징을 융합하여 이미지 분류 성능을 향상시키는 방법을 연구하기 시작했습니다. 이 융합 방법은 얕은 특징의 높은 계산 효율성과 깊은 특징의 강력한 표현 능력을 활용할 수 있습니다. 두 가지를 결합하면 높은 분류 정확도를 유지하면서 계산 비용과 데이터 라벨링 요구 사항을 줄일 수 있습니다. 이 방법은 데이터 양이 적거나 컴퓨팅 리소스가 제한된 애플리케이션 시나리오에 특히 중요합니다. 얕은 특징과 깊은 특징의 융합 방법에 대한 심층적인 연구를 통해 이미지 분류 알고리즘의 성능을 더욱 향상시키고 컴퓨터 비전 분야의 연구 및 응용에 더 많은 혁신을 가져올 수 있습니다.

일반적인 방법은 계단식 CNN 모델을 사용하는 것입니다. 첫 번째 CNN 모델은 얕은 특징을 추출하는 데 사용되고, 두 번째 CNN 모델은 깊은 특징을 추출하는 데 사용되며, 마지막으로 두 모델의 출력을 연결하여 개선합니다. 분류 결과의 정확성.

이것은 계단식 CNN 모델을 사용하여 손으로 쓴 숫자를 인식하는 예입니다. 이 모델은 60,000개의 훈련 이미지와 10,000개의 테스트 이미지를 포함하는 MNIST 데이터세트를 사용하며, 각 이미지 크기는 28×28픽셀입니다.

먼저 모델의 아키텍처를 정의합니다. 특징을 추출하기 위해 두 개의 CNN 모델을 사용합니다. 첫 번째 CNN 모델에는 얕은 특징을 추출하기 위한 두 개의 컨볼루셔널 레이어와 최대 풀링 레이어가 포함되어 있습니다. 두 번째 CNN 모델에는 심층 특징을 추출하기 위한 3개의 컨볼루셔널 레이어와 최대 풀링 레이어가 포함되어 있습니다. 다음으로 두 모델의 출력을 연결하고 분류를 위해 완전히 연결된 두 레이어를 추가합니다. 이러한 아키텍처는 풍부한 기능을 추출하고 더 나은 분류 작업을 수행할 수 있습니다.

import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense, Concatenate

# Define shallow CNN model
shallow_input = Input(shape=(28, 28, 1))
shallow_conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(shallow_input)
shallow_pool1 = MaxPooling2D((2, 2))(shallow_conv1)
shallow_conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(shallow_pool1)
shallow_pool2 = MaxPooling2D((2, 2))(shallow_conv2)
shallow_flat = Flatten()(shallow_pool2)
shallow_output = Dense(128, activation='relu')(shallow_flat)

# Define deep CNN model
deep_input = Input(shape=(28, 28, 1))
deep_conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(deep_input)
deep_pool1 = MaxPooling2D((2, 2))(deep_conv1)
deep_conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(deep_pool1)
deep_pool2 = MaxPooling2D((2, 2))(deep_conv2)
deep_conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(deep_pool2)
deep_pool3 = MaxPooling2D((2, 2))(deep_conv3)
deep_flat = Flatten()(deep_pool3)
deep_output = Dense(256, activation='relu')(deep_flat)

# Concatenate shallow and deep models
concatenate = Concatenate()([shallow_output, deep_output])
output = Dense(10, activation='softmax')(concatenate)

# Define the model
model = tf.keras.Model(inputs=[shallow_input, deep_input], outputs=output)
로그인 후 복사

그런 다음 모델이 컴파일되고 훈련됩니다. MNIST 데이터 세트는 다중 클래스 분류 문제이므로 교차 엔트로피 손실 함수와 Adam 최적화 프로그램을 사용하여 모델을 컴파일합니다. 모델은 각 시대마다 128개의 배치를 사용하여 100개의 시대에 대한 훈련 세트에서 훈련됩니다.

# Compile the model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# Train the model
model.fit([x_train, x_train], y_train, batch_size=128, epochs=100, verbose=1, validation_data=([x_test, x_test], y_test))
로그인 후 복사

마지막으로 테스트 세트에서 모델의 성능을 평가합니다. 이 예에서 계단식 CNN 모델의 테스트 정확도는 99.2%로 단일 CNN 모델로 훈련한 테스트 정확도보다 약 0.5% 더 높으며, 이는 얕은 특징과 깊은 특징의 융합이 실제로 이미지 성능을 향상시킬 수 있음을 나타냅니다. 분류.

간단히 말하면, 얕은 특징과 깊은 특징의 융합은 이미지 분류 성능을 향상시키는 효과적인 방법입니다. 이 예에서는 계단식 CNN 모델을 사용하여 손으로 쓴 숫자를 인식하는 방법을 보여줍니다. 여기서 첫 번째 CNN 모델은 얕은 특징을 추출하고 두 번째 CNN 모델은 깊은 특징을 추출한 다음 두 모델의 출력을 분류를 위해 함께 연결합니다. 이 방법은 다른 많은 이미지 분류 작업에도 널리 사용됩니다.

위 내용은 얕은 피처와 깊은 피처를 결합한 실제 적용 사례의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. May 30, 2024 am 09:35 AM

이전에 작성했던 오늘은 딥 러닝 기술이 복잡한 환경에서 비전 기반 SLAM(동시 위치 파악 및 매핑)의 성능을 향상할 수 있는 방법에 대해 논의합니다. 심층 특징 추출과 깊이 일치 방법을 결합하여 저조도 조건, 동적 조명, 질감이 약한 영역 및 심한 지터와 같은 까다로운 시나리오에서 적응을 향상하도록 설계된 다목적 하이브리드 시각적 SLAM 시스템을 소개합니다. 우리 시스템은 확장 단안, 스테레오, 단안 관성 및 스테레오 관성 구성을 포함한 여러 모드를 지원합니다. 또한 시각적 SLAM을 딥러닝 방법과 결합하여 다른 연구에 영감을 주는 방법도 분석합니다. 공개 데이터 세트 및 자체 샘플링 데이터에 대한 광범위한 실험을 통해 위치 정확도 및 추적 견고성 측면에서 SL-SLAM의 우수성을 입증합니다.

AI 기술을 활용해 오래된 사진을 복원하는 방법(예제 및 코드 분석 포함) AI 기술을 활용해 오래된 사진을 복원하는 방법(예제 및 코드 분석 포함) Jan 24, 2024 pm 09:57 PM

오래된 사진 복원은 인공 지능 기술을 사용하여 오래된 사진을 복구, 향상 및 개선하는 방법입니다. 컴퓨터 비전과 머신러닝 알고리즘을 사용하는 이 기술은 오래된 사진의 손상과 결함을 자동으로 식별하고 복구하여 사진을 더 선명하고 자연스럽고 사실적으로 보이게 합니다. 오래된 사진 복원의 기술 원칙은 주로 다음과 같은 측면을 포함합니다: 1. 이미지 노이즈 제거 및 향상 오래된 사진을 복원할 때 먼저 노이즈를 제거하고 향상시켜야 합니다. 평균 필터링, 가우시안 필터링, 양방향 필터링 등과 같은 이미지 처리 알고리즘 및 필터를 사용하여 노이즈 및 색 반점 문제를 해결하여 사진 품질을 향상시킬 수 있습니다. 2. 이미지 복원 및 수리 오래된 사진에는 긁힘, 균열, 퇴색 등 일부 결함 및 손상이 있을 수 있습니다. 이러한 문제는 이미지 복원 및 복구 알고리즘으로 해결될 수 있습니다.

하나의 기사로 이해하기: AI, 머신러닝, 딥러닝 간의 연결과 차이점 하나의 기사로 이해하기: AI, 머신러닝, 딥러닝 간의 연결과 차이점 Mar 02, 2024 am 11:19 AM

오늘날 급속한 기술 변화의 물결 속에서 인공지능(AI), 머신러닝(ML), 딥러닝(DL)은 정보기술의 새로운 물결을 이끄는 밝은 별과도 같습니다. 이 세 단어는 다양한 최첨단 토론과 실제 적용에 자주 등장하지만, 이 분야를 처음 접하는 많은 탐험가들에게는 그 구체적인 의미와 내부 연관성이 여전히 수수께끼에 싸여 있을 수 있습니다. 그럼 먼저 이 사진을 보시죠. 딥러닝, 머신러닝, 인공지능 사이에는 밀접한 상관관계와 진보적인 관계가 있음을 알 수 있습니다. 딥러닝은 머신러닝의 특정 분야이며, 머신러닝은

매우 강하다! 딥러닝 알고리즘 상위 10개! 매우 강하다! 딥러닝 알고리즘 상위 10개! Mar 15, 2024 pm 03:46 PM

2006년 딥러닝이라는 개념이 제안된 지 거의 20년이 지났습니다. 딥러닝은 인공지능 분야의 혁명으로 많은 영향력 있는 알고리즘을 탄생시켰습니다. 그렇다면 딥러닝을 위한 상위 10가지 알고리즘은 무엇이라고 생각하시나요? 다음은 제가 생각하는 딥 러닝을 위한 최고의 알고리즘입니다. 이들은 모두 혁신, 애플리케이션 가치 및 영향력 측면에서 중요한 위치를 차지하고 있습니다. 1. 심층 신경망(DNN) 배경: 다층 퍼셉트론이라고도 불리는 심층 신경망(DNN)은 가장 일반적인 딥 러닝 알고리즘으로 처음 발명되었을 때 최근까지 컴퓨팅 성능 병목 현상으로 인해 의문을 제기했습니다. 20년, 컴퓨팅 파워, 데이터의 폭발적인 증가로 돌파구가 찾아왔습니다. DNN은 여러 개의 숨겨진 레이어를 포함하는 신경망 모델입니다. 이 모델에서 각 레이어는 입력을 다음 레이어로 전달하고

컴퓨터 비전의 표적 추적 개념 해석 컴퓨터 비전의 표적 추적 개념 해석 Jan 24, 2024 pm 03:18 PM

객체 추적은 컴퓨터 비전의 중요한 작업이며 교통 모니터링, 로봇 공학, 의료 영상, 자동 차량 추적 및 기타 분야에서 널리 사용됩니다. 대상 객체의 초기 위치를 결정한 후 딥러닝 방법을 사용하여 비디오의 각 연속 프레임에서 대상 객체의 위치를 ​​예측하거나 추정합니다. 객체 추적은 실생활에서 광범위하게 응용되며 컴퓨터 비전 분야에서 매우 중요합니다. 객체 추적에는 일반적으로 객체 감지 프로세스가 포함됩니다. 다음은 객체 추적 단계에 대한 간략한 개요입니다. 1. 객체 감지 - 알고리즘이 객체 주위에 경계 상자를 만들어 객체를 분류하고 감지합니다. 2. 각 개체에 고유 ID(ID)를 할당합니다. 3. 관련 정보를 저장하면서 프레임에서 감지된 개체의 움직임을 추적합니다. 표적 추적 표적의 유형

CNN 및 Transformer 하이브리드 모델을 사용하여 성능을 향상시키는 방법 CNN 및 Transformer 하이브리드 모델을 사용하여 성능을 향상시키는 방법 Jan 24, 2024 am 10:33 AM

CNN(Convolutional Neural Network)과 Transformer는 다양한 작업에서 뛰어난 성능을 보여준 두 가지 딥 러닝 모델입니다. CNN은 주로 이미지 분류, 타겟 감지, 이미지 분할과 같은 컴퓨터 비전 작업에 사용됩니다. 컨볼루션 연산을 통해 이미지의 국소적 특징을 추출하고, 풀링 연산을 통해 특징 차원 축소 및 공간 불변성을 수행합니다. 반면 Transformer는 기계 번역, 텍스트 분류, 음성 인식 등 자연어 처리(NLP) 작업에 주로 사용됩니다. 이는 self-attention 메커니즘을 사용하여 시퀀스의 종속성을 모델링하고 기존 순환 신경망의 순차적 계산을 피합니다. 이 두 모델은 서로 다른 작업에 사용되지만 시퀀스 모델링에는 유사점이 있으므로

텍스트 분류를 위한 양방향 LSTM 모델 사용 사례 연구 텍스트 분류를 위한 양방향 LSTM 모델 사용 사례 연구 Jan 24, 2024 am 10:36 AM

양방향 LSTM 모델은 텍스트 분류에 사용되는 신경망입니다. 다음은 텍스트 분류 작업에 양방향 LSTM을 사용하는 방법을 보여주는 간단한 예입니다. 먼저 필요한 라이브러리와 모듈을 가져와야 합니다. importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

단백질과 모든 살아있는 분자의 상호 작용과 구조를 이전보다 훨씬 더 정확하게 예측하는 AlphaFold 3 출시 단백질과 모든 살아있는 분자의 상호 작용과 구조를 이전보다 훨씬 더 정확하게 예측하는 AlphaFold 3 출시 Jul 16, 2024 am 12:08 AM

Editor | Radish Skin 2021년 강력한 AlphaFold2가 출시된 이후 과학자들은 단백질 구조 예측 모델을 사용하여 세포 내 다양한 ​​단백질 구조를 매핑하고 약물을 발견하며 알려진 모든 단백질 상호 작용에 대한 "우주 지도"를 그려 왔습니다. 방금 Google DeepMind는 단백질, 핵산, 소분자, 이온 및 변형된 잔기를 포함한 복합체에 대한 결합 구조 예측을 수행할 수 있는 AlphaFold3 모델을 출시했습니다. AlphaFold3의 정확도는 과거의 많은 전용 도구(단백질-리간드 상호작용, 단백질-핵산 상호작용, 항체-항원 예측)에 비해 크게 향상되었습니다. 이는 단일 통합 딥러닝 프레임워크 내에서 다음을 달성할 수 있음을 보여줍니다.

See all articles