목차
척도 불변 특징 변환 알고리즘은 어떻게 이미지의 핵심 포인트를 감지하나요?
기술 주변기기 일체 포함 SIFT(척도 불변 특징) 알고리즘

SIFT(척도 불변 특징) 알고리즘

Jan 22, 2024 pm 05:09 PM
컴퓨터 비전 이미지 처리 기능 엔지니어링 알고리즘 개념

SIFT(척도 불변 특징) 알고리즘

SIFT(Scale Invariant Feature Transform) 알고리즘은 이미지 처리 및 컴퓨터 비전 분야에서 사용되는 특징 추출 알고리즘입니다. 이 알고리즘은 컴퓨터 비전 시스템의 객체 인식 및 일치 성능을 향상시키기 위해 1999년에 제안되었습니다. SIFT 알고리즘은 강력하고 정확하며 이미지 인식, 3차원 재구성, 표적 탐지, 비디오 추적 및 기타 분야에서 널리 사용됩니다. 여러 스케일 공간에서 핵심 포인트를 감지하고 핵심 포인트 주변의 로컬 특징 설명자를 추출하여 스케일 불변성을 달성합니다. SIFT 알고리즘의 주요 단계에는 스케일 공간 구성, 핵심 포인트 탐지, 핵심 포인트 위치 지정, 방향 할당 및 특징 설명자 생성이 포함됩니다. 이러한 단계를 통해 SIFT 알고리즘은 강력하고 고유한 특징을 추출하여 이미지의 효율적인 인식 및 일치를 달성할 수 있습니다.

SIFT 알고리즘은 이미지의 크기, 회전, 밝기 변화에 불변하는 주요 특징을 가지며, 고유하고 안정적인 특징점을 추출하여 효율적인 매칭 및 인식을 달성할 수 있습니다. 주요 단계에는 스케일 공간 극값 감지, 핵심 포인트 위치 지정, 방향 할당, 핵심 포인트 설명 및 매칭 등이 포함됩니다. SIFT 알고리즘은 스케일 공간 극단값 감지를 통해 다양한 스케일의 이미지에서 극단점을 감지할 수 있습니다. 핵심점 위치결정 단계에서는 국부적 극값 검출과 에지 반응 제거를 통해 안정성과 고유성을 지닌 핵심점을 결정한다. 방향 할당 단계에서는 특징 설명의 회전 불변성을 개선하기 위해 각 키 포인트에 주요 방향을 할당합니다. 키포인트 설명 단계에서는 키포인트 주변의 이미지 그라데이션 정보를 사용하여 특징을 생성합니다

1. 스케일 공간 극값 검출

원본 이미지를 가우스 차분 함수를 통해 스케일 공간에서 처리하여 극값을 검출합니다. 스케일 포인트가 다른 값. 그런 다음 DoG 연산자를 사용하여 이러한 극단점을 감지합니다. 즉, 서로 다른 스케일과 공간 위치의 가우시안 피라미드에서 가우시안 이미지의 인접한 두 레이어 간의 차이를 비교하여 스케일 불변 키 포인트를 얻습니다.

2. 키 포인트 위치 지정

다음으로 SIFT 알고리즘은 회전 변환의 불변성을 보장하기 위해 각 키 포인트에 방향을 할당합니다. 방향 할당은 그래디언트 히스토그램 통계 방법을 사용하여 각 키포인트 주변 픽셀의 그래디언트 값과 방향을 계산한 다음 이 값을 그래디언트 히스토그램에 분배하고 최종적으로 히스토그램에서 가장 큰 피크를 주요 포인트로 선택합니다. 핵심 방향.

3. 방향 할당

핵심 위치 지정 및 방향 할당 후 SIFT 알고리즘은 로컬 이미지 블록의 특징 설명자를 사용하여 각 핵심 포인트의 지역적 특성을 설명합니다. 설명자는 회전, 크기 및 밝기 변경에 대한 불변성을 보장하기 위해 주요 지점 주변의 픽셀을 기반으로 구성됩니다. 구체적으로 SIFT 알고리즘은 키포인트 주변의 이미지 블록을 여러 개의 하위 영역으로 나눈 후 각 하위 영역의 픽셀의 기울기 크기와 방향을 계산하고 128차원 특징 벡터를 구성하여 해당 이미지의 국소적 특성을 설명합니다. 핵심. .

4. 핵심 포인트 설명 및 매칭

마지막으로 SIFT 알고리즘은 두 이미지의 핵심 특징 벡터를 비교하여 이미지 매칭을 수행합니다. 구체적으로, 알고리즘은 유클리드 거리 또는 코사인 유사성을 계산하여 두 특징 벡터 간의 유사성을 평가하여 특징 일치 및 대상 인식을 달성합니다.

척도 불변 특징 변환 알고리즘은 어떻게 이미지의 핵심 포인트를 감지하나요?

SIFT 알고리즘은 가우시안 차분 함수를 통해 원본 이미지에 대한 스케일 공간 처리를 수행하여 스케일이 다른 극점을 감지합니다. 구체적으로, SIFT 알고리즘은 가우시안 피라미드를 구성함으로써 이미지의 스케일 변환을 실현합니다. 즉, 원본 이미지를 지속적으로 컨볼루션하고 다운샘플링하여 서로 다른 스케일을 가진 일련의 가우스 이미지를 얻습니다. 그런 다음, 가우시안 이미지의 인접한 두 레이어에 대해 차이 연산, 즉 DoG 연산자를 수행하여 스케일 불변 키 포인트를 얻습니다.

DoG 연산자 작업을 수행하기 전에 가우시안 피라미드의 레이어 수와 이미지의 각 레이어 크기를 결정해야 합니다. SIFT 알고리즘은 일반적으로 가우시안 피라미드를 여러 레이어로 나누고 각 레이어의 이미지 크기는 이전 레이어 이미지의 절반입니다. 이렇게 하면 이미지의 스케일 변경이 핵심 포인트 감지에 영향을 미치지 않습니다. 각 이미지 레이어에 대해 SIFT 알고리즘은 다양한 스케일에서 핵심 포인트를 감지하기 위해 여러 스케일을 선택합니다.

가우시안 피라미드의 레이어 수와 이미지의 각 레이어 크기를 결정한 후 SIFT 알고리즘은 각 이미지 레이어의 극점, 즉 가우시안 피라미드의 각 픽셀 주위의 26픽셀을 찾습니다. 해당 레이어에서 포인트 중 최대값 또는 최소값을 찾아 이를 가우시안 피라미드의 인접한 두 레이어에 있는 해당 픽셀 포인트와 비교하여 해당 포인트가 스케일 공간의 극점인지 확인합니다. 이를 통해 다양한 규모의 이미지에서 안정성과 고유성을 갖춘 핵심 포인트를 감지할 수 있습니다. SIFT 알고리즘은 낮은 대비 및 가장자리 지점을 제외하는 등 감지된 극단 지점에 대한 일부 스크리닝도 수행한다는 점에 유의해야 합니다.

키 포인트의 위치를 ​​결정한 후 SIFT 알고리즘은 키 포인트 위치 지정 및 방향 할당도 수행하여 회전 변환에 대한 불변성을 보장합니다. 구체적으로 SIFT 알고리즘은 각 키포인트 주변 픽셀의 기울기 값과 방향을 계산하고 이 값을 기울기 히스토그램에 할당합니다. 그런 다음 SIFT 알고리즘은 히스토그램에서 가장 큰 피크를 키 포인트의 주요 방향으로 선택하고 이를 포인트 방향으로 사용합니다. 이렇게 하면 키 포인트가 회전 불변임을 보장하고 후속 기능 설명을 위한 방향 정보를 제공합니다.

SIFT 알고리즘의 핵심 포인트 감지 및 위치 지정은 가우스 피라미드 및 DoG 연산자를 기반으로 하므로 알고리즘은 이미지 크기 변화에 대한 견고성이 뛰어납니다. 그러나 SIFT 알고리즘은 계산 복잡도가 높고 이미지 컨볼루션 및 차분 연산이 많이 필요하므로 적분 이미지 및 고속 필터 기술을 사용하는 등 실제 응용에서는 특정 최적화 및 가속이 필요합니다.

일반적으로 SIFT 알고리즘은 효과적인 특징 추출 알고리즘으로 견고성과 정확성이 강하고 이미지의 크기 조정, 회전, 밝기 등의 변환을 효과적으로 처리할 수 있어 효율적인 이미지 추출 및 식별이 가능합니다. . 이 알고리즘은 컴퓨터 비전 및 이미지 처리 분야에서 널리 사용되어 컴퓨터 비전 시스템 개발에 중요한 기여를 했습니다.

위 내용은 SIFT(척도 불변 특징) 알고리즘의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

단일 단계와 이중 단계 표적 탐지 알고리즘의 차이점 단일 단계와 이중 단계 표적 탐지 알고리즘의 차이점 Jan 23, 2024 pm 01:48 PM

객체 감지는 컴퓨터 비전 분야에서 중요한 작업으로, 이미지나 비디오에서 객체를 식별하고 해당 위치를 찾는 데 사용됩니다. 이 작업은 일반적으로 정확도와 견고성이 다른 단일 단계 알고리즘과 2단계 알고리즘의 두 가지 범주로 나뉩니다. 단일 단계 표적 탐지 알고리즘 단일 단계 표적 탐지 알고리즘은 표적 탐지를 분류 문제로 변환하며, 속도가 빠르고 단 한 단계로 탐지를 완료할 수 있다는 장점이 있습니다. 그러나 과도한 단순화로 인해 정확도는 일반적으로 2단계 객체 감지 알고리즘만큼 좋지 않습니다. 일반적인 단일 단계 표적 탐지 알고리즘에는 YOLO, SSD 및 FasterR-CNN이 포함됩니다. 이러한 알고리즘은 일반적으로 전체 이미지를 입력으로 사용하고 분류기를 실행하여 대상 객체를 식별합니다. 기존의 2단계 타겟 탐지 알고리즘과 달리 미리 영역을 정의할 필요가 없고 직접 예측합니다.

이미지 처리 작업에서 Wasserstein 거리가 어떻게 사용되나요? 이미지 처리 작업에서 Wasserstein 거리가 어떻게 사용되나요? Jan 23, 2024 am 10:39 AM

EMD(EarthMover's Distance)라고도 알려진 Wasserstein 거리는 두 확률 분포 간의 차이를 측정하는 데 사용되는 측정 기준입니다. 전통적인 KL 분기 또는 JS 분기와 비교하여 Wasserstein 거리는 분포 간의 구조적 정보를 고려하므로 많은 이미지 처리 작업에서 더 나은 성능을 나타냅니다. 두 배포판 간의 최소 운송 비용을 계산함으로써 Wasserstein 거리는 한 배포판을 다른 배포판으로 변환하는 데 필요한 최소 작업량을 측정할 수 있습니다. 이 측정항목은 분포 간의 기하학적 차이를 포착할 수 있으므로 이미지 생성 및 스타일 전송과 같은 작업에서 중요한 역할을 합니다. 따라서 Wasserstein 거리가 개념이 됩니다.

Vision Transformer(VIT) 모델의 작동 원리 및 특성에 대한 심층 분석 Vision Transformer(VIT) 모델의 작동 원리 및 특성에 대한 심층 분석 Jan 23, 2024 am 08:30 AM

VisionTransformer(VIT)는 Google에서 제안하는 Transformer 기반의 이미지 분류 모델입니다. 기존 CNN 모델과 달리 VIT는 이미지를 시퀀스로 표현하고 이미지의 클래스 레이블을 예측하여 이미지 구조를 학습합니다. 이를 달성하기 위해 VIT는 입력 이미지를 여러 패치로 나누고 채널을 통해 각 패치의 픽셀을 연결한 다음 선형 투영을 수행하여 원하는 입력 크기를 얻습니다. 마지막으로 각 패치는 단일 벡터로 평면화되어 입력 시퀀스를 형성합니다. Transformer의 self-attention 메커니즘을 통해 VIT는 서로 다른 패치 간의 관계를 캡처하고 효과적인 특징 추출 및 분류 예측을 수행할 수 있습니다. 이 직렬화된 이미지 표현은

AI 기술을 활용해 오래된 사진을 복원하는 방법(예제 및 코드 분석 포함) AI 기술을 활용해 오래된 사진을 복원하는 방법(예제 및 코드 분석 포함) Jan 24, 2024 pm 09:57 PM

오래된 사진 복원은 인공 지능 기술을 사용하여 오래된 사진을 복구, 향상 및 개선하는 방법입니다. 컴퓨터 비전과 머신러닝 알고리즘을 사용하는 이 기술은 오래된 사진의 손상과 결함을 자동으로 식별하고 복구하여 사진을 더 선명하고 자연스럽고 사실적으로 보이게 합니다. 오래된 사진 복원의 기술 원칙은 주로 다음과 같은 측면을 포함합니다: 1. 이미지 노이즈 제거 및 향상 오래된 사진을 복원할 때 먼저 노이즈를 제거하고 향상시켜야 합니다. 평균 필터링, 가우시안 필터링, 양방향 필터링 등과 같은 이미지 처리 알고리즘 및 필터를 사용하여 노이즈 및 색 반점 문제를 해결하여 사진 품질을 향상시킬 수 있습니다. 2. 이미지 복원 및 수리 오래된 사진에는 긁힘, 균열, 퇴색 등 일부 결함 및 손상이 있을 수 있습니다. 이러한 문제는 이미지 복원 및 복구 알고리즘으로 해결될 수 있습니다.

중첩 샘플링 알고리즘의 기본 원리와 구현 과정을 살펴보세요. 중첩 샘플링 알고리즘의 기본 원리와 구현 과정을 살펴보세요. Jan 22, 2024 pm 09:51 PM

중첩 샘플링 알고리즘은 복잡한 확률 분포에서 적분 또는 합을 계산하는 데 사용되는 효율적인 베이지안 통계 추론 알고리즘입니다. 이는 매개변수 공간을 동일한 볼륨의 여러 하이퍼큐브로 분해하고, 가장 작은 볼륨의 하이퍼큐브 중 하나를 점진적으로 반복적으로 "밀어낸" 다음 하이퍼큐브를 무작위 샘플로 채워 확률 분포의 적분 값을 더 잘 추정하는 방식으로 작동합니다. 중첩 샘플링 알고리즘은 지속적인 반복을 통해 고정밀 적분값과 매개변수 공간의 경계를 얻을 수 있으며, 이는 모델 비교, 매개변수 추정, 모델 선택 등 통계 문제에 적용할 수 있습니다. 이 알고리즘의 핵심 아이디어는 복잡한 적분 문제를 일련의 단순 적분 문제로 변환하고, 매개변수 공간의 부피를 점진적으로 줄여 진정한 적분 값에 접근하는 것입니다. 각 반복 단계는 매개변수 공간에서 무작위로 샘플링됩니다.

id3 알고리즘에서 정보 획득의 역할은 무엇입니까? id3 알고리즘에서 정보 획득의 역할은 무엇입니까? Jan 23, 2024 pm 11:27 PM

ID3 알고리즘은 의사결정나무 학습의 기본 알고리즘 중 하나입니다. 각 특징의 정보 이득을 계산하여 최적의 분할 지점을 선택하여 의사결정 트리를 생성합니다. 정보 이득은 분류 작업에 대한 기능의 기여도를 측정하는 데 사용되는 ID3 알고리즘의 중요한 개념입니다. 본 글에서는 ID3 알고리즘의 정보이득 개념과 계산방법, 적용에 대해 자세히 소개한다. 1. 정보 엔트로피의 개념 정보 엔트로피는 확률변수의 불확실성을 측정하는 정보이론의 개념이다. 이산 확률 변수 숫자의 경우 p(x_i)는 확률 변수 X가 x_i 값을 가질 확률을 나타냅니다. 편지

영상 초해상도 재구성에 AI 기술 적용 영상 초해상도 재구성에 AI 기술 적용 Jan 23, 2024 am 08:06 AM

초해상도 이미지 재구성은 CNN(Convolutional Neural Network), GAN(Generative Adversarial Network)과 같은 딥러닝 기술을 사용하여 저해상도 이미지에서 고해상도 이미지를 생성하는 프로세스입니다. 이 방법의 목표는 저해상도 이미지를 고해상도 이미지로 변환하여 이미지의 품질과 디테일을 향상시키는 것입니다. 이 기술은 의료영상, 감시카메라, 위성영상 등 다양한 분야에 폭넓게 활용되고 있다. 초고해상도 영상 재구성을 통해 보다 선명하고 세밀한 영상을 얻을 수 있어 영상 속 대상과 특징을 보다 정확하게 분석하고 식별하는 데 도움이 됩니다. 재구성 방법 초해상도 영상 재구성 방법은 일반적으로 보간 기반 방법과 딥러닝 기반 방법의 두 가지 범주로 나눌 수 있습니다. 1) 보간 기반 방법 보간 기반 초해상 영상 재구성

Wu-Manber 알고리즘 소개 및 Python 구현 지침 Wu-Manber 알고리즘 소개 및 Python 구현 지침 Jan 23, 2024 pm 07:03 PM

Wu-Manber 알고리즘은 문자열을 효율적으로 검색하는 데 사용되는 문자열 일치 알고리즘입니다. Boyer-Moore 알고리즘과 Knuth-Morris-Pratt 알고리즘의 장점을 결합한 하이브리드 알고리즘으로 빠르고 정확한 패턴 매칭을 제공합니다. Wu-Manber 알고리즘 1단계. 패턴의 가능한 각 하위 문자열을 해당 하위 문자열이 발생하는 패턴 위치에 매핑하는 해시 테이블을 만듭니다. 2. 이 해시 테이블은 텍스트 패턴의 잠재적 시작 위치를 신속하게 식별하는 데 사용됩니다. 3. 텍스트를 반복하고 각 문자를 패턴의 해당 문자와 ​​비교합니다. 4. 문자가 일치하면 다음 문자로 이동하여 비교를 계속할 수 있습니다. 5. 문자가 일치하지 않으면 해시 테이블을 사용하여 패턴의 다음 잠재적 문자를 결정할 수 있습니다.

See all articles