유사성 척도와 거리 척도의 관계
기계 학습 애플리케이션에서 유사성 측정은 두 샘플 개체의 유사성을 평가하는 데 사용되는 지표입니다. 일반적으로 거리 측정값을 사용하여 표현되는 효과적인 거리 측정값은 기계 학습 모델의 성능을 향상시킬 수 있습니다.
그러나 수치적 관계로 보면 유사성 척도와 거리 척도는 정반대입니다.
유사성 측정은 일반적으로 숫자 값으로 표현됩니다. 값이 높을수록 데이터 샘플이 더 유사합니다. 일반적으로 변환에는 0과 1 사이의 숫자가 사용됩니다. 여기서 0은 유사성이 낮음을 나타냅니다. 즉, 데이터 객체가 유사하지 않음을 나타내고 1은 유사성이 높음을 나타내며 데이터 객체가 매우 유사함을 나타냅니다.
거리 측정법은 데이터 객체의 유사성이 거리 값에 반비례한다는 것을 나타냅니다.
일반적으로 사용되는 거리 측정법
유클리드 거리
는 유클리드 측정법으로, 대부분의 기계 학습 알고리즘은 관찰의 유사성을 측정하기 위해 이 거리 측정법을 사용합니다.
Manhattan Distance
Manhattan 거리는 모든 차원에서 두 장소의 총 차이입니다. 도시에서는 직선으로 이동하는 것이 거의 불가능하기 때문에 건물들은 직선 경로를 차단하는 그리드로 그룹화됩니다. "맨해튼 거리"라는 용어는 종종 두 도시 블록 사이의 거리를 나타내는 데 사용됩니다.
Minkowski Distance
는 유클리드 거리와 맨해튼 거리의 일반화된 형태로, nD 공간에서 두 관측치 사이의 거리를 정의합니다.
Hamming Distance
Hamming distance는 길이가 같은 두 문자열의 유사성을 측정합니다. 해밍 거리는 같은 길이의 두 문자열 사이에서 해당 문자가 달라지는 지점의 수입니다.
코사인 거리(코사인 유사성)
이 측정항목은 텍스트 마이닝, 자연어 처리 및 정보 검색 시스템에서 주어진 두 문서 간의 유사성을 측정하는 데 널리 사용됩니다.
Chebyshev 거리
두 nD 관측값 또는 벡터 사이의 Chebyshev 거리는 데이터 샘플 좌표 간 변경의 최대 절대값과 같습니다. 2차원 세계에서 데이터 포인트 사이의 체비쇼프 거리는 2차원 좌표의 절대 차이의 합으로 결정될 수 있습니다.
Mahalanobis Distance
는 주로 데이터 포인트와 분포 사이의 거리를 측정하기 위한 다변량 통계 테스트에 사용됩니다.
Chi-square Distance
Chi-square distance는 "히스토그램 매칭"이라고 불리는 정규화된 히스토그램 사이의 유사점을 찾기 위한 텍스처 분석과 함께 컴퓨터 비전에서 자주 사용됩니다.
Pearson 상관 관계
Pearson 상관 계수는 두 속성 간의 선형 단조 관계의 강도를 수량화하고 두 데이터 세트가 직선에 있는지 여부를 측정합니다.
Spearman Correlation
Spearman 상관 계수는 두 변수의 종속성을 측정하는 비모수적 지표로, 두 통계 변수의 상관 관계를 평가하기 위해 단조 방정식을 사용합니다. Spearman 상관 계수는 가설 검정에 자주 사용됩니다.
위 내용은 유사성 척도와 거리 척도의 관계의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이미지 주석은 이미지 콘텐츠에 더 깊은 의미와 설명을 제공하기 위해 이미지에 레이블이나 설명 정보를 연결하는 프로세스입니다. 이 프로세스는 비전 모델을 훈련하여 이미지의 개별 요소를 보다 정확하게 식별하는 데 도움이 되는 기계 학습에 매우 중요합니다. 이미지에 주석을 추가함으로써 컴퓨터는 이미지 뒤의 의미와 맥락을 이해할 수 있으므로 이미지 내용을 이해하고 분석하는 능력이 향상됩니다. 이미지 주석은 컴퓨터 비전, 자연어 처리, 그래프 비전 모델 등 다양한 분야를 포괄하여 차량이 도로의 장애물을 식별하도록 지원하는 등 광범위한 애플리케이션을 보유하고 있습니다. 의료영상인식을 통한 질병진단. 이 기사에서는 주로 더 나은 오픈 소스 및 무료 이미지 주석 도구를 권장합니다. 1.마케센스

기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

일반인의 관점에서 보면 기계 학습 모델은 입력 데이터를 예측된 출력에 매핑하는 수학적 함수입니다. 보다 구체적으로, 기계 학습 모델은 예측 출력과 실제 레이블 사이의 오류를 최소화하기 위해 훈련 데이터로부터 학습하여 모델 매개변수를 조정하는 수학적 함수입니다. 기계 학습에는 로지스틱 회귀 모델, 의사결정 트리 모델, 지원 벡터 머신 모델 등 다양한 모델이 있습니다. 각 모델에는 적용 가능한 데이터 유형과 문제 유형이 있습니다. 동시에, 서로 다른 모델 간에는 많은 공통점이 있거나 모델 발전을 위한 숨겨진 경로가 있습니다. 연결주의 퍼셉트론을 예로 들면, 퍼셉트론의 은닉층 수를 늘려 심층 신경망으로 변환할 수 있습니다. 퍼셉트론에 커널 함수를 추가하면 SVM으로 변환할 수 있다. 이 하나

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

기계 학습 분야에서 Go 언어의 적용 가능성은 엄청납니다. 동시성: 병렬 프로그래밍을 지원하며 기계 학습 작업에서 계산 집약적인 작업에 적합합니다. 효율성: 가비지 수집기 및 언어 기능은 대규모 데이터 세트를 처리할 때에도 코드의 효율성을 보장합니다. 사용 용이성: 구문이 간결하므로 기계 학습 애플리케이션을 쉽게 배우고 작성할 수 있습니다.
