영상인식의 응용과 예, 오류역전파 알고리즘의 원리
오류 역전파는 일반적으로 사용되는 기계 학습 알고리즘으로 신경망 훈련, 특히 이미지 인식 분야에서 널리 사용됩니다. 이 기사에서는 이미지 인식에서 이 알고리즘의 적용, 원리 및 예를 소개합니다.
1. 오류 역전파 알고리즘 적용
이미지 인식은 컴퓨터 프로그램을 사용하여 숫자나 이미지를 분석, 처리, 이해하여 그 안에 있는 정보와 특징을 식별하는 방법입니다. 영상 인식에서는 오류 역전파 알고리즘이 널리 사용됩니다. 이 알고리즘은 신경망을 훈련하여 인식 작업을 수행합니다. 신경망은 인간 두뇌의 뉴런 간의 상호 작용을 시뮬레이션하고 복잡한 입력 데이터를 효율적으로 처리하고 분류할 수 있는 계산 모델입니다. 오류 역전파 알고리즘은 신경망의 가중치와 편향을 지속적으로 조정함으로써 신경망이 점진적으로 학습하고 인식 기능을 향상시킬 수 있도록 해줍니다.
오류 역전파 알고리즘은 신경망의 가중치와 편향을 조정하여 출력 결과와 실제 결과 간의 오류를 최소화합니다. 훈련 과정은 신경망의 출력 계산, 오류 계산, 각 뉴런에 오류 역전파, 오류를 기반으로 가중치와 편향 조정 단계로 구성됩니다.
1. 신경망의 가중치와 편향을 무작위로 초기화합니다.
2. 훈련 데이터 세트를 입력하여 신경망의 출력을 계산합니다.
3. 출력 결과와 실제 결과 사이의 오차를 계산합니다.
4. 오류를 역전파하고 신경망의 가중치와 편향을 조정합니다.
5. 오류가 최소값에 도달하거나 사전 설정된 훈련 시간에 도달할 때까지 2~4단계를 반복합니다.
오류 역전파 알고리즘의 훈련 과정은 신경망의 출력 결과와 실제 결과 사이의 오차를 최소화하는 최적화 문제라고 볼 수 있습니다. 훈련 과정에서 알고리즘은 신경망의 가중치와 편향을 지속적으로 조정하여 오류가 점차 감소하고 궁극적으로 더 높은 인식 정확도를 달성합니다.
오류 역전파 알고리즘의 적용은 이미지 인식에만 국한되지 않고 음성 인식, 자연어 처리 등 다양한 분야에 활용될 수 있습니다. 광범위한 적용을 통해 많은 인공 지능 기술을 보다 효율적으로 구현할 수 있습니다.
2. 오류 역전파 알고리즘의 원리
오류 역전파 알고리즘의 원리는 다음 단계로 요약할 수 있습니다.
1 순방향 전파: 훈련 샘플을 입력하고 신경망을 통과시킵니다. 네트워크 네트워크의 순방향 전달은 출력을 계산합니다.
2. 오류 계산: 출력 결과를 실제 결과와 비교하여 오류를 계산합니다.
3. 역전파: 출력 레이어에서 입력 레이어로 오류를 역전파하여 각 뉴런의 가중치와 편향을 조정합니다.
4. 가중치 및 편향 업데이트: 역전파로 얻은 기울기 정보를 기반으로 뉴런의 가중치와 편향을 업데이트하여 다음 순방향 전파에서 오류를 줄입니다.
오류 역전파 알고리즘에서는 역전파 과정이 핵심입니다. 체인 규칙을 통해 출력 레이어의 오류를 입력 레이어로 전달하고, 각 뉴런이 오류에 기여하는 정도를 계산하고, 기여 정도에 따라 가중치와 편향을 조정합니다. 구체적으로 체인 규칙은 다음 공식으로 표현될 수 있습니다.
frac{partial E}{partial w_{i,j}}=frac{partial E}{partial y_j}frac{partial y_j}{partial z_j } frac{partial z_j}{partial w_{i,j}}
여기서 E는 오류를 나타내고, w_{i,j}는 i번째 뉴런과 j번째 뉴런을 연결하는 가중치를 나타내고, y_j는 j개 뉴런의 출력 z_j는 j번째 뉴런의 가중 합을 나타냅니다. 이 공식은 연결 가중치에 대한 오류의 영향이 출력 y_j, 활성화 함수 frac{partial y_j}{partial z_j}의 미분 및 입력 x_i의 곱으로 구성된다고 설명할 수 있습니다.
체인 규칙을 통해 오류는 각 뉴런으로 역전파될 수 있으며 오류에 대한 각 뉴런의 기여도가 계산됩니다. 그런 다음 기여도에 따라 가중치와 편향을 조정하여 다음 순방향 전파의 오류가 더 작아지도록 합니다.
3. 오류 역전파 알고리즘의 예
다음은 오류 역전파 알고리즘이 이미지 인식에 어떻게 적용되는지 보여주는 간단한 예입니다.
손으로 쓴 숫자로 구성된 28x28 사진이 있고 신경망을 사용하여 이 숫자를 인식한다고 가정해 보겠습니다. 우리는 이 이미지를 784차원 벡터로 확장하고 각 픽셀을 신경망의 입력으로 사용합니다.
우리는 학습을 위해 두 개의 숨겨진 레이어가 있는 신경망을 사용합니다. 각 은닉층에는 64개의 뉴런이 있고, 출력층에는 각각 숫자 0~9를 나타내는 10개의 뉴런이 있습니다.
먼저 신경망의 가중치와 편향을 무작위로 초기화합니다. 그런 다음 훈련 데이터 세트를 입력하고 순방향 전파를 통해 출력을 계산합니다. 출력 결과가 [0.1,0.2,0.05,0.3,0.02,0.15,0.05,0.1,0.03,0.1]이라고 가정합니다. 이는 신경망이 이 그림이 숫자 3일 가능성이 가장 높다고 믿고 있음을 나타냅니다.
다음으로 출력 결과와 실제 결과 사이의 오차를 계산합니다. 실제 결과가 [0,0,0,1,0,0,0,0,0,0]이라고 가정하면 이 그림의 실제 개수는 3개입니다. 교차 엔트로피 손실 함수를 사용하여 오류를 계산할 수 있으며 공식은 다음과 같습니다.
E=-sum_{i=1}^{10}y_i log(p_i)
그 중 y_i는 실제 결과의 i번째 요소를 나타내고, p_i는 신경망 출력 결과의 i번째 요소를 나타냅니다. 실제 결과와 신경망의 출력을 수식에 대입하면 오차는 0.356이다.
다음으로 오류를 신경망으로 역전파하고 오류에 대한 각 뉴런의 기여도를 계산한 다음 기여도에 따라 가중치와 편향을 조정합니다. 경사하강법 알고리즘을 사용하여 다음 공식으로 가중치와 편향을 업데이트할 수 있습니다.
w_{i,j}=w_{i,j}-alphafrac{partial E}{partial w_{i,j}}
그 중 알파는 각 업데이트의 단계 크기를 조정하는 데 사용되는 학습률을 나타냅니다. 가중치와 편향을 지속적으로 조정함으로써 신경망의 출력 결과를 실제 결과에 더 가깝게 만들어 인식 정확도를 향상시킬 수 있습니다.
위는 이미지 인식에서 오류 역전파 알고리즘의 응용, 원리 및 예입니다. 오류 역전파 알고리즘은 신경망이 이미지를 보다 정확하게 식별할 수 있도록 신경망의 가중치와 편향을 지속적으로 조정하고 적용 가능성이 넓습니다.
위 내용은 영상인식의 응용과 예, 오류역전파 알고리즘의 원리의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

일반인의 관점에서 보면 기계 학습 모델은 입력 데이터를 예측된 출력에 매핑하는 수학적 함수입니다. 보다 구체적으로, 기계 학습 모델은 예측 출력과 실제 레이블 사이의 오류를 최소화하기 위해 훈련 데이터로부터 학습하여 모델 매개변수를 조정하는 수학적 함수입니다. 기계 학습에는 로지스틱 회귀 모델, 의사결정 트리 모델, 지원 벡터 머신 모델 등 다양한 모델이 있습니다. 각 모델에는 적용 가능한 데이터 유형과 문제 유형이 있습니다. 동시에, 서로 다른 모델 간에는 많은 공통점이 있거나 모델 발전을 위한 숨겨진 경로가 있습니다. 연결주의 퍼셉트론을 예로 들면, 퍼셉트론의 은닉층 수를 늘려 심층 신경망으로 변환할 수 있습니다. 퍼셉트론에 커널 함수를 추가하면 SVM으로 변환할 수 있다. 이 하나

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

MetaFAIR는 대규모 기계 학습을 수행할 때 생성되는 데이터 편향을 최적화하기 위한 새로운 연구 프레임워크를 제공하기 위해 Harvard와 협력했습니다. 대규모 언어 모델을 훈련하는 데는 수개월이 걸리고 수백 또는 수천 개의 GPU를 사용하는 것으로 알려져 있습니다. LLaMA270B 모델을 예로 들면, 훈련에는 총 1,720,320 GPU 시간이 필요합니다. 대규모 모델을 교육하면 이러한 워크로드의 규모와 복잡성으로 인해 고유한 체계적 문제가 발생합니다. 최근 많은 기관에서 SOTA 생성 AI 모델을 훈련할 때 훈련 프로세스의 불안정성을 보고했습니다. 이는 일반적으로 손실 급증의 형태로 나타납니다. 예를 들어 Google의 PaLM 모델은 훈련 과정에서 최대 20번의 손실 급증을 경험했습니다. 수치 편향은 이러한 훈련 부정확성의 근본 원인입니다.
