지능형 음성 합성의 핵심 원리
통계적 매개변수 음성 합성 방법은 유연성으로 인해 음성 합성 분야에서 광범위한 주목을 받았습니다. 최근 몇 년 동안 기계 학습 연구 분야에서 심층 신경망 모델을 적용하면 기존 방법에 비해 상당한 이점을 얻었습니다. 통계적 매개변수 음성 합성에서 신경망 기반 모델링 방법의 적용은 점차 심화되어 음성 합성의 주류 방법 중 하나가 되었습니다.
통계적 매개변수 음성 합성을 위한 백엔드 음향 모델링이 이 기사의 주제입니다.

파라메트릭 음성 합성의 백엔드 프레임워크
그림에 표시된 것처럼 통계적 파라메트릭 음성 합성의 백엔드 프레임워크가 설명되어 있으며 주로 훈련과 합성의 두 단계로 구성됩니다.
훈련 단계에서는 사운드 라이브러리의 음성 파형과 해당 텍스트 기능이 입력으로 사용됩니다. 음성 파형은 보코더를 통해 추출되고 음향 모델링을 위해 텍스트 기능과 결합됩니다.
합성 단계에서는 훈련된 음향 모델에 따라 합성할 텍스트 특징을 입력하고 해당 음향 특징을 예측합니다. 예측된 음향 특징은 보코더를 사용하여 음성 파형으로 변환됩니다. 보코더 및 음향 모델은 통계적 매개변수 음성 합성 시스템의 핵심 구성 요소입니다.
음성 생성의 소스 필터 모델은 음성 파형 매개변수화 프로세스 중에 음성의 단기 스펙트럼을 기본 주파수와 스펙트럼 포락선으로 분리하는 데 사용됩니다. 일반적으로 시간 영역 파형이나 주파수 영역 고조파를 분석하여 음성의 여기 특성을 얻은 후 음성 파형의 단시간 푸리에 변환을 통해 얻은 진폭 스펙트럼에서 시간과 주파수의 주기성을 제거하여 다음과 같은 스펙트럼 패키지를 얻습니다. 연설. 이 방법은 음성 신호를 더 잘 이해하고 처리하는 데 도움이 될 수 있습니다.
스펙트럼 포락선의 차원이 높기 때문에 모델링이 어려워지기 때문에 스펙트럼 포락선의 차원을 줄여야 하는 경우가 많습니다. 음성 파형 재구성은 음성의 음향 매개변수로부터 원래 음성을 복원하는 역과정입니다. 기본 주파수, 스펙트럼 포락선 및 음성의 여기 특성을 적절한 위상 제약 조건과 결합하여 STFT 진폭 스펙트럼을 재구성할 수 있습니다.
기간 모델링은 통계적 매개변수 음성 합성의 또 다른 모듈입니다. 지속 시간 모델링에는 보코더가 필요하지 않습니다. 기본 프레임워크는 음향 모델링과 유사합니다. 통계 모델은 주어진 텍스트 특징에 해당하는 시간 길이의 확률 분포를 모델링하는 데 사용됩니다.
HMM을 기반으로 한 통계적 매개변수 음성합성 방법은 20년 이상의 개발 끝에 성숙한 음성합성 방법이 되었습니다.
이 섹션에서는 은닉 마르코프 모델과 그 이론적 근거를 소개합니다. 특정 위상 제약 조건과 결합하여 STFT 진폭 스펙트럼이 재구성됩니다. 기간 모델링은 통계적 매개변수 음성 합성의 또 다른 모듈입니다. 지속 시간 모델링에는 보코더가 필요하지 않습니다. 기본 프레임워크는 음향 모델링과 유사합니다. 통계 모델은 주어진 텍스트 특징에 해당하는 시간 길이의 확률 분포를 모델링하는 데 사용됩니다. HMM을 기반으로 한 통계적 매개변수 음성합성 방법은 20년 이상의 개발 끝에 성숙한 음성합성 방법이 되었습니다.
Hidden Markov 모델은 일련의 모델링을 위한 확률 모델로, 숨겨진 상태 변수 세트와 관찰 변수 세트로 구성됩니다. HMM 모델에는 두 가지 가정이 있습니다.
상태 변수는 1차 마르코프 체인을 따릅니다. 즉, 공식(1)에 표시된 것처럼 현재 상태는 이전 상태와만 관련됩니다.

수학식 (2)와 같이 특정 순간의 관측 변수의 확률 분포는 현재 순간의 상태에만 관련될 뿐 다른 순간의 상태나 관측 변수와는 아무런 관련이 없습니다. .

보통 HMM 모델에서는

HMM의 상태 전이 행렬 A를 교묘하게 형성하며, 관측 변수의 확률 밀도는

입니다. HMM 출력 확률:

HMM 기반 통계적 매개변수 음성 합성 방법에서 음향 모델링의 핵심 원리는 HMM 모델을 사용하여 음성 특징 시퀀스의 확률적 모델링을 수행하는 것입니다. 주어진 상황.
전체 시스템 구성에는 음성 음향 기능 선택, 모델링 단위 선택 및 HMM 모델 구성이 포함됩니다. 음성 합성 시스템의 음향 특징에는 여기 특징과 스펙트럼 특징이 포함됩니다.
스펙트럼 특징 선정에는 HMM 모델링의 난이도를 줄이기 위해 Mel cepstrum, Line Spectrum pair 특징 등 차원 간의 상관관계를 제거한 저차원 스펙트럼 표현이 일반적으로 사용됩니다. 음성 신호의 단기 고정 특성과 HM의 모델링 능력을 고려하여 음성 합성 시스템의 HMM은 일반적으로 중국어의 모음 단위와 같은 음소 수준 단위를 모델링합니다. 음성의 타이밍 특성으로 인해 오디오 모델링에서 HMM의 토폴로지는 왼쪽에서 오른쪽으로 단방향 순회 상태인 경우가 많습니다.

HMM 기반 통계 매개변수 음성 합성 시스템 프레임워크
그림은 HMM 기반 통계 매개변수 음성 합성 시스템의 프레임워크를 나타낸 것입니다. 훈련단계와 종합단계로 나누어진다. 훈련 단계에는 음성 음향 특징 추출과 HMM 모델 훈련이 포함됩니다. HMM 모델은 모델링 단위로 음소를 사용하므로 모델링 정확도를 높이기 위해 일반적으로 문맥 관련 음소 3개를 모델링합니다.
첫 번째 시스템 학습 과정에서는 HMM 모델의 분산 하한을 추정한 후 모델 초기화 매개변수로 단일 톤 HMM 모델을 학습한 다음 컨텍스트 관련 트라이폰 HMM 모델을 학습하고, 마지막으로 결정 트리를 기반으로 Mn 압력 클러스터링이 수행됩니다.
합성 단계에서는 먼저 텍스트를 분석하고 예측된 시간 길이와 결합하고 의사 결정 트리를 기반으로 상황 관련 HMM 모델 시퀀스를 결정한 후 최대 우도 매개 변수 생성을 통해 연속 음향 특징 시퀀스를 얻습니다. 알고리즘과 음성 파형은 합성기에 의해 합성됩니다. HMM을 기반으로 한 통계적 매개변수 음성 합성 시스템은 너무 매끄럽습니다. 한 가지 이유는 HMM의 모델링 능력이 제한되어 있기 때문입니다.
최근에는 머신러닝의 한 분야로 딥러닝이 빠르게 발전했습니다. 딥러닝은 다중 비선형 변환과 다중 처리 계층, 즉 신경망으로 구성된 네트워크 모델을 사용하는 것을 말합니다. DNN과 인치의 우수한 모델링 능력으로 인해 DNN과 RNN 기반의 음향 모델링 방법은 통계적 매개변수 음성 합성에 적용되며 그 효과는 HMM 기반의 음향 모델링 방법보다 우수합니다.
이제 통계적 매개변수 음성 합성 음향 모델링의 주류 방법이 되었습니다. DNN과 RNN 기반 음성 합성 시스템은 시스템 프레임워크가 유사합니다.

신경망 기반 음성 합성 방법의 프레임 다이어그램
그림에 표시된 것처럼 그림의 입력 특징은 텍스트에서 추출된 특징입니다. 즉, 이산적이거나 연속적인 수치 특징을 사용하여 설명합니다. 텍스트.
DNN 및 RNN을 기반으로 한 통계적 매개변수 음성 합성 시스템의 훈련은 일반적으로 훈련 기준을 채택하고 BP 알고리즘 및 SGD 알고리즘을 사용하여 모델 매개변수를 업데이트하여 예측된 음향 매개변수가 자연 음향 매개변수에 최대한 가깝도록 합니다. 합성 단계에서는 합성된 텍스트에서 텍스트 특징을 추출한 후 DNN 또는 RNN을 통해 해당 음향 매개변수를 예측하고 마지막으로 보코더를 통해 음성 파형을 합성합니다.
현재 DNN과 RNN을 기반으로 한 모델링 방법은 기본 주파수와 스펙트럼 매개변수를 포함한 음성 음향 매개변수에 주로 적용됩니다. 기간 정보는 여전히 다른 시스템을 통해 얻어야 합니다. 또한 DNN 및 RNN 모델의 입력 및 출력 기능은 시간에 맞춰 정렬되어야 합니다.
위 내용은 지능형 음성 합성의 핵심 원리의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이미지 주석은 이미지 콘텐츠에 더 깊은 의미와 설명을 제공하기 위해 이미지에 레이블이나 설명 정보를 연결하는 프로세스입니다. 이 프로세스는 비전 모델을 훈련하여 이미지의 개별 요소를 보다 정확하게 식별하는 데 도움이 되는 기계 학습에 매우 중요합니다. 이미지에 주석을 추가함으로써 컴퓨터는 이미지 뒤의 의미와 맥락을 이해할 수 있으므로 이미지 내용을 이해하고 분석하는 능력이 향상됩니다. 이미지 주석은 컴퓨터 비전, 자연어 처리, 그래프 비전 모델 등 다양한 분야를 포괄하여 차량이 도로의 장애물을 식별하도록 지원하는 등 광범위한 애플리케이션을 보유하고 있습니다. 의료영상인식을 통한 질병진단. 이 기사에서는 주로 더 나은 오픈 소스 및 무료 이미지 주석 도구를 권장합니다. 1.마케센스

기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

일반인의 관점에서 보면 기계 학습 모델은 입력 데이터를 예측된 출력에 매핑하는 수학적 함수입니다. 보다 구체적으로, 기계 학습 모델은 예측 출력과 실제 레이블 사이의 오류를 최소화하기 위해 훈련 데이터로부터 학습하여 모델 매개변수를 조정하는 수학적 함수입니다. 기계 학습에는 로지스틱 회귀 모델, 의사결정 트리 모델, 지원 벡터 머신 모델 등 다양한 모델이 있습니다. 각 모델에는 적용 가능한 데이터 유형과 문제 유형이 있습니다. 동시에, 서로 다른 모델 간에는 많은 공통점이 있거나 모델 발전을 위한 숨겨진 경로가 있습니다. 연결주의 퍼셉트론을 예로 들면, 퍼셉트론의 은닉층 수를 늘려 심층 신경망으로 변환할 수 있습니다. 퍼셉트론에 커널 함수를 추가하면 SVM으로 변환할 수 있다. 이 하나

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

MetaFAIR는 대규모 기계 학습을 수행할 때 생성되는 데이터 편향을 최적화하기 위한 새로운 연구 프레임워크를 제공하기 위해 Harvard와 협력했습니다. 대규모 언어 모델을 훈련하는 데는 수개월이 걸리고 수백 또는 수천 개의 GPU를 사용하는 것으로 알려져 있습니다. LLaMA270B 모델을 예로 들면, 훈련에는 총 1,720,320 GPU 시간이 필요합니다. 대규모 모델을 교육하면 이러한 워크로드의 규모와 복잡성으로 인해 고유한 체계적 문제가 발생합니다. 최근 많은 기관에서 SOTA 생성 AI 모델을 훈련할 때 훈련 프로세스의 불안정성을 보고했습니다. 이는 일반적으로 손실 급증의 형태로 나타납니다. 예를 들어 Google의 PaLM 모델은 훈련 과정에서 최대 20번의 손실 급증을 경험했습니다. 수치 편향은 이러한 훈련 부정확성의 근본 원인입니다.
