Pandas의 효율적인 데이터 중복 제거 방법 공개: 중복 데이터를 빠르게 제거하는 팁
Pandas 중복 제거 방법 공개: 빠르고 효율적인 데이터 중복 제거 방법에는 특정 코드 예제가 필요합니다.
데이터 분석 및 처리 과정에서 데이터 중복이 자주 발생합니다. 중복된 데이터는 분석 결과를 오도할 수 있으므로 중복 제거는 매우 중요한 단계입니다. 강력한 데이터 처리 라이브러리인 Pandas는 데이터 중복 제거를 달성하기 위한 다양한 방법을 제공합니다. 이 기사에서는 일반적으로 사용되는 중복 제거 방법을 소개하고 특정 코드 예제를 첨부합니다.
- 단일 열 중복 제거 기준
가장 일반적인 상황은 특정 열의 값이 반복되는지 여부를 기준으로 중복 제거하는 것입니다. Pandas에서는 .duplicated()
메서드를 사용하여 특정 열의 값이 중복되는지 확인한 후 .drop_duplicates()
메서드를 사용하면 됩니다. 중복된 값을 제거합니다. .duplicated()
方法来判断某一列的值是否重复,然后使用.drop_duplicates()
方法来去除重复值。
例如,我们有一个包含了学生信息的DataFrame,其中有一个列是学生的学号,我们希望根据学号去除重复的行:
import pandas as pd data = {'学号': [1001, 1002, 1003, 1002, 1004, 1003], '姓名': ['张三', '李四', '王五', '李四', '赵六', '王五'], '年龄': [18, 19, 20, 19, 21, 20]} df = pd.DataFrame(data) df.drop_duplicates(subset='学号', inplace=True) print(df)
运行结果:
学号 姓名 年龄 0 1001 张三 18 1 1002 李四 19 2 1003 王五 20 4 1004 赵六 21
这样就去除了学号重复的行,只保留了第一次出现的行。
- 基于多列去重
有时候我们需要根据多个列的值是否重复来进行去重。在.drop_duplicates()
方法中可以通过subset
参数指定要根据哪些列进行去重。
例如,我们还是使用上面的学生信息的DataFrame,现在根据学号和姓名去除重复的行:
import pandas as pd data = {'学号': [1001, 1002, 1003, 1002, 1004, 1003], '姓名': ['张三', '李四', '王五', '李四', '赵六', '王五'], '年龄': [18, 19, 20, 19, 21, 20]} df = pd.DataFrame(data) df.drop_duplicates(subset=['学号', '姓名'], inplace=True) print(df)
运行结果:
学号 姓名 年龄 0 1001 张三 18 1 1002 李四 19 2 1003 王五 20 4 1004 赵六 21
这样就根据学号和姓名同时去除了重复的行。
- 基于所有列去重
有时候我们希望根据整个DataFrame的所有列的值是否重复来进行去重。可以使用.duplicated()
方法的keep
参数设置为False
,则会标记所有重复的行。然后使用.drop_duplicates()
import pandas as pd data = {'学号': [1001, 1002, 1003, 1002, 1004, 1003], '姓名': ['张三', '李四', '王五', '李四', '赵六', '王五'], '年龄': [18, 19, 20, 19, 21, 20]} df = pd.DataFrame(data) df.drop_duplicates(keep=False, inplace=True) print(df)
学号 姓名 年龄 0 1001 张三 18 4 1004 赵六 21
- 여러 열 기반 중복 제거
때로는 여러 열의 값이 반복되는지 여부를 기반으로 중복 제거를 수행해야 하는 경우가 있습니다. .drop_duplicates()
메서드에서 subset
매개변수를 사용하여 중복 제거에 사용할 열을 지정할 수 있습니다.
예를 들어 위의 학생 정보 DataFrame을 계속 사용하고 이제 학생 ID와 이름을 기준으로 중복 행을 제거합니다.
rrreee🎜실행 결과: 🎜rrreee🎜이런 방식으로 학생 ID와 이름을 기준으로 중복 행이 제거됩니다. 동시에. 🎜- 🎜모든 열 기반 중복 제거🎜🎜🎜때때로 전체 DataFrame의 모든 열 값이 반복되는지 여부를 기반으로 중복 제거를 수행하고 싶을 때가 있습니다.
.duplicated()
메서드를 사용하여 keep
매개변수를 False
로 설정하면 모든 중복 행이 표시됩니다. 그런 다음 .drop_duplicates()
메서드를 사용하여 이러한 중복 행을 제거합니다. 🎜🎜예를 들어 위의 학생 정보 DataFrame을 계속 사용하고 이제 전체 DataFrame의 모든 열을 기반으로 중복 행을 제거합니다. 🎜rrreee🎜실행 결과: 🎜rrreee🎜이렇게 하면 전체 DataFrame의 모든 중복 행이 제거됩니다. . 🎜🎜요약: 🎜🎜이 기사에서는 Pandas에서 일반적으로 사용되는 세 가지 중복 제거 방법, 즉 단일 열 기반 중복 제거, 여러 열 기반 중복 제거, 모든 열 기반 중복 제거를 소개합니다. 중복 데이터를 빠르고 효율적으로 제거하려면 실제 필요에 따라 적절한 방법을 선택하십시오. 실제 적용에서 이러한 방법은 특정 데이터에 따라 유연하게 사용될 수 있으며 데이터 처리 및 분석의 효율성을 향상시켜야 합니다. 🎜🎜위 내용은 이 기사의 전체 내용입니다. 독자들이 이 내용을 통해 데이터 중복 제거에 Pandas를 더 잘 적용할 수 있기를 바랍니다. 🎜위 내용은 Pandas의 효율적인 데이터 중복 제거 방법 공개: 중복 데이터를 빠르게 제거하는 팁의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











DDREASE는 하드 드라이브, SSD, RAM 디스크, CD, DVD 및 USB 저장 장치와 같은 파일 또는 블록 장치에서 데이터를 복구하기 위한 도구입니다. 한 블록 장치에서 다른 블록 장치로 데이터를 복사하여 손상된 데이터 블록은 남겨두고 양호한 데이터 블록만 이동합니다. ddreasue는 복구 작업 중에 간섭이 필요하지 않으므로 완전히 자동화된 강력한 복구 도구입니다. 게다가 ddasue 맵 파일 덕분에 언제든지 중지하고 다시 시작할 수 있습니다. DDREASE의 다른 주요 기능은 다음과 같습니다. 복구된 데이터를 덮어쓰지 않지만 반복 복구 시 공백을 채웁니다. 그러나 도구에 명시적으로 지시된 경우에는 잘릴 수 있습니다. 여러 파일이나 블록의 데이터를 단일 파일로 복구

0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Excel에서 여러 기준으로 필터링을 사용하는 방법을 알아야 하는 경우 다음 자습서에서는 데이터를 효과적으로 필터링하고 정렬할 수 있는 단계를 안내합니다. Excel의 필터링 기능은 매우 강력하며 많은 양의 데이터에서 필요한 정보를 추출하는 데 도움이 될 수 있습니다. 이 기능을 사용하면 설정한 조건에 따라 데이터를 필터링하고 조건에 맞는 부분만 표시하여 데이터 관리를 더욱 효율적으로 할 수 있습니다. 필터 기능을 사용하면 대상 데이터를 빠르게 찾을 수 있어 데이터 검색 및 정리에 드는 시간을 절약할 수 있습니다. 이 기능은 단순한 데이터 목록에만 적용할 수 있는 것이 아니라, 여러 조건에 따라 필터링하여 필요한 정보를 보다 정확하게 찾을 수 있도록 도와줍니다. 전반적으로 Excel의 필터링 기능은 매우 실용적입니다.

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

지연이 발생하고 iPhone의 모바일 데이터 연결 속도가 느립니까? 일반적으로 휴대폰의 셀룰러 인터넷 강도는 지역, 셀룰러 네트워크 유형, 로밍 유형 등과 같은 여러 요소에 따라 달라집니다. 더 빠르고 안정적인 셀룰러 인터넷 연결을 얻기 위해 할 수 있는 일이 몇 가지 있습니다. 수정 1 – iPhone 강제 다시 시작 때로는 장치를 강제로 다시 시작하면 셀룰러 연결을 포함한 많은 항목이 재설정됩니다. 1단계 – 볼륨 높이기 키를 한 번 눌렀다가 놓습니다. 그런 다음 볼륨 작게 키를 눌렀다가 다시 놓습니다. 2단계 - 프로세스의 다음 부분은 오른쪽에 있는 버튼을 누르는 것입니다. iPhone이 다시 시작되도록 하세요. 셀룰러 데이터를 활성화하고 네트워크 속도를 확인하세요. 다시 확인하세요 수정 2 – 데이터 모드 변경 5G는 더 나은 네트워크 속도를 제공하지만 신호가 약할 때 더 잘 작동합니다

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

이번 주, 오픈AI(OpenAI), 마이크로소프트(Microsoft), 베조스(Bezos), 엔비디아(Nvidia)가 투자한 로봇 회사인 FigureAI는 약 7억 달러의 자금 조달을 받았으며 내년 내에 독립적으로 걸을 수 있는 휴머노이드 로봇을 개발할 계획이라고 발표했습니다. 그리고 Tesla의 Optimus Prime은 계속해서 좋은 소식을 받았습니다. 올해가 휴머노이드 로봇이 폭발하는 해가 될 것이라는 데는 누구도 의심하지 않는다. 캐나다에 본사를 둔 로봇 회사인 SanctuaryAI는 최근 새로운 휴머노이드 로봇인 Phoenix를 출시했습니다. 관계자들은 이 로봇이 인간과 같은 속도로 자율적으로 많은 작업을 완료할 수 있다고 주장한다. 인간의 속도로 자동으로 작업을 완료할 수 있는 세계 최초의 로봇인 Pheonix는 각 물체를 부드럽게 잡고 움직이며 우아하게 왼쪽과 오른쪽에 배치할 수 있습니다. 자동으로 물체를 식별할 수 있습니다.

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라
