목차
동작 인식 모델에 사용되는 알고리즘 및 원리
结论
백엔드 개발 파이썬 튜토리얼 동작 인식 모델의 알고리즘 및 원리 살펴보기(Python에서 간단한 동작 인식 훈련 모델 생성)

동작 인식 모델의 알고리즘 및 원리 살펴보기(Python에서 간단한 동작 인식 훈련 모델 생성)

Jan 24, 2024 pm 05:51 PM
일체 포함 기계 학습 딥러닝

동작 인식 모델의 알고리즘 및 원리 살펴보기(Python에서 간단한 동작 인식 훈련 모델 생성)

제스처 인식은 컴퓨터 비전 분야의 중요한 연구 분야입니다. 그 목적은 비디오 스트림이나 이미지 시퀀스에서 사람의 손 움직임을 분석하여 제스처의 의미를 결정하는 것입니다. 제스처 인식은 제스처 제어 스마트 홈, 가상 현실 및 게임, 보안 모니터링 및 기타 분야와 같은 광범위한 응용 분야를 가지고 있습니다. 이 기사에서는 동작 인식 모델에 사용되는 알고리즘과 원리를 소개하고 Python을 사용하여 간단한 동작 인식 훈련 모델을 만듭니다.

동작 인식 모델에 사용되는 알고리즘 및 원리

동작 인식 모델에 사용되는 알고리즘 및 원리는 딥 러닝 기반 모델, 기존 머신 러닝 모델, 규칙 기반 방법, 기존 이미지 처리 방법 등 다양합니다. 이들 방법의 원리와 특징을 아래에 소개한다.

1. 딥러닝 기반 모델

딥러닝은 현재 가장 인기 있는 머신러닝 방법 중 하나입니다. 제스처 인식 분야에서도 딥러닝 모델이 널리 사용됩니다. 딥 러닝 모델은 대량의 데이터로부터 학습하여 특징을 추출한 다음 이러한 특징을 사용하여 분류합니다. 동작 인식에서 딥 러닝 모델은 CNN(Convolutional Neural Network) 또는 RNN(Recurrent Neural Network)을 사용하는 경우가 많습니다.

CNN은 이미지 데이터를 효율적으로 처리할 수 있는 특수 신경망입니다. CNN에는 여러 컨볼루셔널 레이어와 풀링 레이어가 포함되어 있습니다. 컨벌루션 레이어는 이미지의 특징을 추출할 수 있고, 풀링 레이어는 이미지의 크기를 줄일 수 있습니다. CNN에는 분류를 위해 완전히 연결된 여러 레이어도 포함되어 있습니다.

RNN은 시퀀스 데이터에 적합한 신경망입니다. 동작 인식에서 RNN은 일반적으로 LSTM(Long Short-Term Memory Network) 또는 GRU(Gated Recurrent Unit)를 사용합니다. RNN은 이전 동작 시퀀스를 학습하여 다음 동작을 예측할 수 있습니다. LSTM과 GRU는 RNN의 그래디언트 소멸 문제를 방지하여 모델이 더 긴 동작 시퀀스를 학습할 수 있도록 합니다.

딥 러닝 기반 모델은 다음과 같은 특징을 가지고 있습니다.

  • 복잡한 동작 시퀀스를 처리할 수 있습니다.
  • 자동으로 기능을 추출할 수 있습니다.
  • 학습에 많은 양의 데이터가 필요합니다.
  • 더 높은 컴퓨팅 리소스가 필요합니다.

2. 기존 기계 학습 모델

전통적인 기계 학습 모델에는 SVM(지원 벡터 머신), 의사 결정 트리, 랜덤 포레스트 등이 포함됩니다. 이러한 모델은 일반적으로 SIFT, HOG 등과 같이 직접 디자인한 기능을 사용합니다. 이러한 기능을 통해 제스처의 모양, 질감 등의 정보를 추출할 수 있습니다.

기존 기계 학습 모델은 다음과 같은 특징을 가지고 있습니다.
  • 기능의 수동 설계가 필요합니다.
  • 훈련에 소량의 데이터가 필요합니다. 훈련 결과를 해석하기가 더 쉽습니다.
  • 3. 규칙 기반 방법
  • 규칙 기반 방법은 제스처를 판단하기 위해 규칙을 수동으로 설계하는 방법입니다. 예를 들어, 제스처의 방향, 모양, 속도 등을 결정하도록 규칙을 설계할 수 있습니다. 이 접근 방식을 사용하려면 규칙을 수동으로 설계해야 하므로 전문적인 지식과 경험이 필요합니다.

규칙 기반 접근 방식에는 다음과 같은 특징이 있습니다.

빠르게 설계하고 구현할 수 있습니다.

전문 지식과 경험이 필요합니다.

특정 제스처 유형만 처리할 수 있습니다. 제스처 순서.

  • 4. 전통적인 이미지 처리 방법
  • 기존의 이미지 처리 방법은 일반적으로 임계값 지정, 가장자리 감지, 형태학 및 기타 기술을 기반으로 제스처 이미지를 처리하여 제스처의 특성을 추출하는 기술을 사용합니다. 이러한 기능은 제스처 분류에 사용될 수 있습니다.

기존 이미지 처리 방법에는 다음과 같은 특징이 있습니다.

기능의 수동 설계가 필요합니다.

훈련에 소량의 데이터가 필요합니다.

훈련 결과를 더 쉽게 해석할 수 있습니다.

Python을 사용하여 간단한 동작 인식 훈련 모델 만들기

    이 섹션에서는 Python을 사용하여 딥 러닝 기반 방법을 사용하는 간단한 동작 인식 훈련 모델을 만듭니다. 구체적으로, Keras 및 TensorFlow 라이브러리를 사용하여 모델을 구축하고 훈련할 것입니다.
  • 1. 데이터 준비
  • 먼저 제스처 데이터 세트를 준비해야 합니다. 여기서는 미국 수화 문자 A-Z의 제스처 이미지가 포함된 "ASL 알파벳"이라는 데이터 세트를 사용합니다. 데이터 세트는 Kaggle에서 다운로드할 수 있습니다.

2. 데이터 전처리

다음으로 제스처 이미지를 전처리해야 합니다. OpenCV 라이브러리를 사용하여 이미지를 읽고 처리하겠습니다. 구체적으로, 먼저 이미지의 크기를 동일한 크기로 조정한 다음 이를 회색조 이미지로 변환하고 픽셀 값을 정규화합니다.

import cv2
import os
import numpy as np

IMG_SIZE = 200

def preprocess_data(data_dir):
    X = []
    y = []
    for folder_name in os.listdir(data_dir):
        label = folder_name
        folder_path = os.path.join(data_dir, folder_name)
        for img_name in os.listdir(folder_path):
            img_path = os.path.join(folder_path, img_name)
            img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
            img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
            img = img/255.0
            X.append(img)
            y.append(label)
    X = np.array(X)
    y = np.array(y)
    return X, y
로그인 후 복사

3. 모델 구축

다음으로 컨볼루셔널 신경망을 기반으로 모델을 구축하겠습니다. 구체적으로, Keras 라이브러리의 Sequential 모델을 사용하여 모델을 구축하겠습니다. 모델에는 여러 개의 컨벌루션 및 풀링 레이어와 여러 개의 완전 연결 레이어가 포함되어 있습니다.

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

def build_model():
    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_SIZE, IMG_SIZE, 1)))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(128, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(256, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(29, activation='softmax'))
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    return model
로그인 후 복사

4. 훈련 모델

接下来,我们将使用准备好的数据集和构建好的模型来训练模型。我们将使用Keras库中的fit方法来训练模型。

X_train, y_train = preprocess_data('asl_alphabet_train')
X_test, y_test = preprocess_data('asl_alphabet_test')

from keras.utils import to_categorical

y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

model = build_model()
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))
로그인 후 복사

5.评估模型

最后,我们将评估模型的性能。我们将使用Keras库中的evaluate方法来评估模型在测试集上的性能。

test_loss, test_acc = model.evaluate(X_test, y_test)
print('Test accuracy:', test_acc)
로그인 후 복사

结论

本文介绍了手势识别模型使用的算法和原理,并使用Python创建了一个简单的手势识别训练模型。我们使用了基于深度学习的方法,并使用Keras和TensorFlow库来构建和训练模型。最后,我们评估了模型在测试集上的性能。手势识别是一个复杂的问题,需要综合考虑多个因素,例如手势序列的长度、手势的复杂度等。因此,在实际应用中,需要根据具体需求选择合适的算法和模型。

위 내용은 동작 인식 모델의 알고리즘 및 원리 살펴보기(Python에서 간단한 동작 인식 훈련 모델 생성)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Jun 10, 2024 am 11:08 AM

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 Jun 07, 2024 am 10:06 AM

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

단백질과 모든 살아있는 분자의 상호 작용과 구조를 이전보다 훨씬 더 정확하게 예측하는 AlphaFold 3 출시 단백질과 모든 살아있는 분자의 상호 작용과 구조를 이전보다 훨씬 더 정확하게 예측하는 AlphaFold 3 출시 Jul 16, 2024 am 12:08 AM

Editor | Radish Skin 2021년 강력한 AlphaFold2가 출시된 이후 과학자들은 단백질 구조 예측 모델을 사용하여 세포 내 다양한 ​​단백질 구조를 매핑하고 약물을 발견하며 알려진 모든 단백질 상호 작용에 대한 "우주 지도"를 그려 왔습니다. 방금 Google DeepMind는 단백질, 핵산, 소분자, 이온 및 변형된 잔기를 포함한 복합체에 대한 결합 구조 예측을 수행할 수 있는 AlphaFold3 모델을 출시했습니다. AlphaFold3의 정확도는 과거의 많은 전용 도구(단백질-리간드 상호작용, 단백질-핵산 상호작용, 항체-항원 예측)에 비해 크게 향상되었습니다. 이는 단일 통합 딥러닝 프레임워크 내에서 다음을 달성할 수 있음을 보여줍니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

See all articles