백엔드 개발 파이썬 튜토리얼 Numpy 기능: 종합적인 분석과 심층적인 적용

Numpy 기능: 종합적인 분석과 심층적인 적용

Jan 26, 2024 am 08:22 AM

Numpy 기능: 종합적인 분석과 심층적인 적용

numpy 함수에 대한 자세한 설명: 초보자부터 마스터까지

소개:
데이터 과학 및 기계 학습 분야에서 numpy는 매우 중요한 Python 라이브러리입니다. 효율적이고 강력한 다차원 배열 조작 도구를 제공하여 대규모 데이터를 쉽고 빠르게 처리할 수 있습니다. 이 기사에서는 배열 생성, 인덱싱, 슬라이싱, 작업 및 변환을 포함하여 numpy 라이브러리에서 가장 일반적으로 사용되는 일부 기능을 자세히 소개하고 특정 코드 예제도 제공합니다.

1. 배열 생성

  1. 배열을 생성하려면 numpy.array() 함수를 사용하세요.

    import numpy as np
    
    # 创建一维数组
    arr1 = np.array([1, 2, 3, 4, 5])
    print(arr1)
    
    # 创建二维数组
    arr2 = np.array([[1, 2, 3], [4, 5, 6]])
    print(arr2)
    
    # 创建全0/1数组
    arr_zeros = np.zeros((2, 3))
    print(arr_zeros)
    
    arr_ones = np.ones((2, 3))
    print(arr_ones)
    
    # 创建指定范围内的数组
    arr_range = np.arange(0, 10, 2)
    print(arr_range)
    로그인 후 복사

2. 배열 인덱싱 및 슬라이싱

  1. 인덱스를 사용하여 배열 요소에 액세스하세요.

    import numpy as np
    
    arr = np.array([1, 2, 3, 4, 5])
    print(arr[0])
    print(arr[2:4])
    로그인 후 복사
  2. 부울 인덱싱을 사용하여 조건을 충족하는 요소를 선택하세요.

    import numpy as np
    
    arr = np.array([1, 2, 3, 4, 5])
    print(arr[arr > 3])
    로그인 후 복사

3. 배열 작업

  1. 배열에 대한 기본 작업입니다.

    import numpy as np
    
    arr1 = np.array([1, 2, 3])
    arr2 = np.array([4, 5, 6])
    
    # 加法
    print(arr1 + arr2)
    
    # 减法
    print(arr1 - arr2)
    
    # 乘法
    print(arr1 * arr2)
    
    # 除法
    print(arr1 / arr2)
    
    # 矩阵乘法
    print(np.dot(arr1, arr2))
    로그인 후 복사
  2. 어레이에 대한 집계 작업.

    import numpy as np
    
    arr = np.array([1, 2, 3, 4, 5])
    
    # 求和
    print(np.sum(arr))
    
    # 求最大值
    print(np.max(arr))
    
    # 求最小值
    print(np.min(arr))
    
    # 求平均值
    print(np.mean(arr))
    로그인 후 복사

4. 배열 변환

  1. 배열의 모양을 변경하려면 reshape() 함수를 사용하세요.

    import numpy as np
    
    arr = np.arange(10)
    print(arr)
    
    reshaped_arr = arr.reshape((2, 5))
    print(reshaped_arr)
    로그인 후 복사
  2. 다차원 배열을 1차원 배열로 변환하려면 flatten() 함수를 사용하세요.

    import numpy as np
    
    arr = np.array([[1, 2, 3], [4, 5, 6]])
    print(arr)
    
    flatten_arr = arr.flatten()
    print(flatten_arr)
    로그인 후 복사

결론:
이 문서에서는 배열 생성, 인덱싱, 슬라이싱, 작업 및 변환과 같은 작업을 포함하여 numpy 라이브러리의 몇 가지 일반적인 기능에 대해 자세히 소개합니다. Numpy 라이브러리의 강력한 기능은 대규모 데이터를 효율적으로 처리하고 데이터 과학 및 기계 학습의 효율성을 향상시키는 데 도움이 될 수 있습니다. 이 글을 통해 독자들이 numpy 라이브러리의 기능을 더 잘 이해하고 적용하며, 실무에서 유연하게 사용할 수 있기를 바랍니다.

참조:

  1. https://numpy.org/doc/stable/reference/

위 내용은 Numpy 기능: 종합적인 분석과 심층적인 적용의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Linux 터미널에서 Python 버전을 볼 때 발생하는 권한 문제를 해결하는 방법은 무엇입니까? Linux 터미널에서 Python 버전을 볼 때 발생하는 권한 문제를 해결하는 방법은 무엇입니까? Apr 01, 2025 pm 05:09 PM

Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬의 수학 모듈 : 통계 파이썬의 수학 모듈 : 통계 Mar 09, 2025 am 11:40 AM

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

인기있는 파이썬 라이브러리와 그 용도는 무엇입니까? 인기있는 파이썬 라이브러리와 그 용도는 무엇입니까? Mar 21, 2025 pm 06:46 PM

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

Python으로 명령 줄 인터페이스 (CLI)를 만드는 방법은 무엇입니까? Python으로 명령 줄 인터페이스 (CLI)를 만드는 방법은 무엇입니까? Mar 10, 2025 pm 06:48 PM

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.

한 데이터 프레임의 전체 열을 Python의 다른 구조를 가진 다른 데이터 프레임에 효율적으로 복사하는 방법은 무엇입니까? 한 데이터 프레임의 전체 열을 Python의 다른 구조를 가진 다른 데이터 프레임에 효율적으로 복사하는 방법은 무엇입니까? Apr 01, 2025 pm 11:15 PM

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

파이썬에서 가상 환경의 목적을 설명하십시오. 파이썬에서 가상 환경의 목적을 설명하십시오. Mar 19, 2025 pm 02:27 PM

이 기사는 프로젝트 종속성 관리 및 충돌을 피하는 데 중점을 둔 Python에서 가상 환경의 역할에 대해 설명합니다. 프로젝트 관리 개선 및 종속성 문제를 줄이는 데있어 생성, 활성화 및 이점을 자세히 설명합니다.

See all articles