일반적인 numpy 함수 및 해당 응용 프로그램을 마스터하세요: numpy 함수에 대한 기본 지식을 배웁니다.
numpy 함수 배우기: 일반적인 numpy 함수와 사용법, 특정 코드 예제가 필요합니다.
Python은 데이터 분석 및 과학 컴퓨팅 분야에서 널리 사용되는 강력한 프로그래밍 언어입니다. 이 분야에서 numpy는 배열과 행렬 작업을 위한 많은 기능을 제공하는 매우 중요한 라이브러리입니다. 이 기사에서는 일반적으로 사용되는 몇 가지 numpy 함수와 사용법을 살펴보고 구체적인 코드 예제를 제공합니다.
먼저 해당 기능을 사용하려면 numpy 라이브러리를 가져와야 합니다. 가져오기 전에 numpy 라이브러리를 올바르게 설치했는지 확인하세요. 다음 명령을 사용하여 numpy를 설치할 수 있습니다.
pip install numpy
numpy를 성공적으로 설치한 후에는 코드에서 이를 가져올 수 있습니다.
import numpy as np
다음으로 일반적으로 사용되는 몇 가지 numpy 기능과 사용법을 알아보겠습니다.
- Create arrays
numpy는 배열을 생성하는 다양한 방법을 제공합니다. 가장 간단한 방법은np.array
함수를 사용하는 것입니다. 다음 코드 예제는 1차원 배열을 생성합니다:np.array
函数。以下代码示例创建了一个一维数组:
a = np.array([1, 2, 3, 4, 5]) print(a)
输出结果:
[1 2 3 4 5]
除了使用np.array
函数,还可以使用以下方法创建数组:
np.zeros
:创建一个由0填充的数组;np.ones
:创建一个由1填充的数组;np.arange
:创建一个等差数列数组;np.linspace
:创建一个等间距数列数组;
- 数组操作
numpy提供了许多操作数组的函数。以下是一些常见的函数及其用法。
np.shape
:获取数组的形状;np.ndim
:获取数组的维度;np.size
:获取数组的大小;np.reshape
:改变数组的形状;np.concatenate
:连接两个数组;np.split
:将一个数组分成多个子数组;
以下代码示例演示了一些数组操作的用法:
a = np.array([[1, 2, 3], [4, 5, 6]]) print(np.shape(a)) # 输出(2, 3) print(np.ndim(a)) # 输出2 print(np.size(a)) # 输出6 b = np.reshape(a, (3, 2)) print(b)
输出结果:
[[1 2] [3 4] [5 6]]
- 数学运算
numpy提供了丰富的数学函数,用于对数组进行计算。以下是一些常见的数学函数及其用法。
np.sum
:计算数组元素的总和;np.mean
:计算数组元素的平均值;np.max
:找到数组中的最大值;np.min
:找到数组中的最小值;np.sin
:计算数组元素的正弦值;np.cos
:计算数组元素的余弦值;
以下代码示例演示了一些数学运算的用法:
a = np.array([1, 2, 3, 4, 5]) print(np.sum(a)) # 输出15 print(np.mean(a)) # 输出3.0 print(np.max(a)) # 输出5 print(np.min(a)) # 输出1 b = np.sin(a) print(b)
输出结果:
[ 0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427]
- 矩阵运算
除了对数组进行数学运算,numpy还提供了丰富的矩阵运算函数。以下是一些常见的矩阵运算函数及其用法。
np.dot
:计算两个矩阵的点积;np.transpose
:矩阵转置;np.linalg.inv
:计算矩阵的逆;np.linalg.det
:计算矩阵的行列式;np.linalg.solve
a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6], [7, 8]]) c = np.dot(a, b) print(c) d = np.transpose(a) print(d) e = np.linalg.inv(a) print(e) f = np.linalg.det(b) print(f) x = np.array([[1, 2], [3, 4]]) y = np.array([5, 6]) z = np.linalg.solve(x, y) print(z)
로그인 후 복사 출력:
[[19 22] [43 50]] [[1 3] [2 4]] [[-2. 1. ] [ 1.5 -0.5]] -2.000000000000002 [-4. 4.5]
np.array
함수를 사용하는 것 외에도 다음 방법을 사용하여 배열을 생성할 수도 있습니다. :
np.zeros
: 0으로 채워진 배열을 만듭니다.
np.ones
: 1로 채워진 배열을 만듭니다. .arange code>: 동일한 간격의 시퀀스 배열을 만듭니다.
np.linspace
: 동일한 간격의 시퀀스 배열을 만듭니다. 🎜🎜- 🎜Array Operations🎜numpy는 다양한 배열 연산을 제공합니다. 다음은 몇 가지 일반적인 기능과 그 용도입니다. 🎜
- 🎜
np.shape
: 배열의 모양을 가져옵니다. 🎜🎜np.ndim
: 배열의 크기를 가져옵니다. code>np.size: 배열의 크기를 가져옵니다. 🎜🎜np.reshape
: 배열의 모양을 변경합니다. 🎜🎜np.concatenate
두 개의 배열을 연결합니다. 🎜🎜np.split: 배열을 여러 하위 배열로 분할합니다. 🎜🎜🎜다음 코드 예제는 일부 배열 작업의 사용을 보여줍니다. 🎜rrreee🎜출력 결과: 🎜rrreee- 🎜수학 연산🎜Numpy는 배열 계산을 수행하기 위한 풍부한 수학 함수 세트를 제공합니다. 다음은 몇 가지 일반적인 수학 함수와 그 용도입니다. 🎜
- 🎜
np.sum
: 배열 요소의 합계를 계산합니다. 🎜🎜np.mean
: 배열 요소의 평균을 계산합니다. code >np.max: 배열에서 최대값을 찾습니다. 🎜🎜np.min
: 배열에서 최소값을 찾습니다. 🎜🎜np.sin
: 배열 요소의 사인 값을 계산합니다. 🎜🎜np.cos
: 배열 요소의 코사인 값을 계산합니다. 🎜🎜🎜다음 코드 예제는 몇 가지 수학적 연산의 사용을 보여줍니다. 🎜출력 결과: 🎜rrreee- 🎜행렬 연산🎜 배열에 대한 수학 연산을 수행하는 것 외에도 numpy는 다양한 행렬 연산 기능도 제공합니다. 다음은 몇 가지 일반적인 행렬 연산 함수와 사용법입니다. 🎜
- 🎜
np.dot
: 두 행렬의 내적을 계산합니다. 🎜🎜np.transpose
: 행렬 전치 🎜🎜 np .linalg.inv
: 행렬의 역수를 계산합니다. 🎜🎜np.linalg.det
: 행렬의 행렬식을 계산합니다. 🎜🎜np.linalg.solve code> : 선형 방정식 시스템을 풉니다. 🎜🎜🎜다음 코드 예제에서는 일부 행렬 연산의 사용을 보여줍니다. 🎜rrreee🎜출력 결과: 🎜rrreee🎜이 기사에서는 일반적으로 사용되는 몇 가지 numpy 함수와 사용법을 소개합니다. 이러한 기능을 익히면 배열과 행렬을 보다 유연하게 조작하고 다양한 수학적, 과학적 계산을 수행할 수 있습니다. 이 글이 numpy 함수를 배우는 데 도움이 되기를 바랍니다! 🎜
위 내용은 일반적인 numpy 함수 및 해당 응용 프로그램을 마스터하세요: numpy 함수에 대한 기본 지식을 배웁니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제









Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

이 튜토리얼은 간단한 나무 탐색을 넘어서 DOM 조작에 중점을 둔 아름다운 수프에 대한 이전 소개를 바탕으로합니다. HTML 구조를 수정하기위한 효율적인 검색 방법과 기술을 탐색하겠습니다. 일반적인 DOM 검색 방법 중 하나는 EX입니다

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.
