목차
협업 필터링 추천 알고리즘
콘텐츠 필터링 추천 알고리즘
딥러닝 추천 시스템
기술 주변기기 일체 포함 프로그램의 기계 학습을 위한 일반적인 추천 알고리즘을 설명하는 예

프로그램의 기계 학습을 위한 일반적인 추천 알고리즘을 설명하는 예

Feb 05, 2024 pm 06:54 PM
딥러닝 추천 알고리즘 콘텐츠 필터링

프로그램의 기계 학습을 위한 일반적인 추천 알고리즘을 설명하는 예

머신러닝과 데이터 마이닝 분야의 핵심 구성요소로 추천 알고리즘은 개인화된 추천 콘텐츠에서 중요한 역할을 합니다. .NET 개발에서는 다양한 알고리즘을 사용하여 추천 시스템을 구현할 수 있습니다. 이 기사에서는 협업 필터링, 콘텐츠 필터링, 딥 러닝 추천 시스템이라는 세 가지 일반적인 추천 알고리즘을 소개하고 각 알고리즘에 대한 .NET 소스 코드 예제를 제공합니다.

협업 필터링 추천 알고리즘

협업 필터링 알고리즘은 사용자 행동 데이터를 기반으로 사용자 간의 유사성을 분석하여 사용자에게 추천 콘텐츠를 제공합니다. 일반적인 협업 필터링 알고리즘에는 사용자 기반 협업 필터링과 항목 기반 협업 필터링이 포함됩니다. 다음은 사용자 기반 협업 필터링 알고리즘의 구현을 보여주는 .NET 예제입니다. ``csharp 시스템 사용; System.Collections.Generic을 사용합니다. 네임스페이스CollaborativeFiltering { 수업 프로그램 { 정적 무효 Main(string[] args) { //사용자 행동 데이터 Dictionary> userRatings = 새 사전>() { { "User1", 새 사전() { { "항목1", 5 }, { "항목2", 3 }, { "항목3", 4 } } }, { "User2", new Dictionary

using System;using System.Collections.Generic;class CollaborativeFiltering{static void Main(){// 用户-物品评分矩阵Dictionary<string dictionary double>> userItemRatings = new Dictionary<string dictionary double>>{{ "User1", new Dictionary<string double> { { "Item1", 5.0 }, { "Item2", 3.0 } } },{ "User2", new Dictionary<string double> { { "Item1", 4.0 }, { "Item3", 1.0 } } },{ "User3", new Dictionary<string double> { { "Item2", 4.5 }, { "Item4", 2.0 } } }};string targetUser = "User2";string targetItem = "Item2";// 计算与目标用户相似的其他用户var similarUsers = FindSimilarUsers(userItemRatings, targetUser);// 基于相似用户的评分预测double predictedRating = PredictRating(userItemRatings, similarUsers, targetUser, targetItem);Console.WriteLine($"预测用户 {targetUser} 对物品 {targetItem} 的评分为: {predictedRating}");}static Dictionary<string double> FindSimilarUsers(Dictionary<string dictionary double>> userItemRatings, string targetUser){Dictionary<string double> similarUsers = new Dictionary<string double>();foreach (var user in userItemRatings.Keys){if (user != targetUser){double similarity = CalculateSimilarity(userItemRatings[targetUser], userItemRatings[user]);similarUsers.Add(user, similarity);}}return similarUsers;}static double CalculateSimilarity(Dictionary<string double> ratings1, Dictionary<string double> ratings2){// 计算两个用户之间的相似性,可以使用不同的方法,如皮尔逊相关系数、余弦相似度等// 这里使用简单的欧氏距离作为示例double distance = 0.0;foreach (var item in ratings1.Keys){if (ratings2.ContainsKey(item)){distance += Math.Pow(ratings1[item] - ratings2[item], 2);}}return 1 / (1 + Math.Sqrt(distance));}static double PredictRating(Dictionary<string dictionary double>> userItemRatings, Dictionary<string double> similarUsers, string targetUser, string targetItem){double numerator = 0.0;double denominator = 0.0;foreach (var user in similarUsers.Keys){if (userItemRatings[user].ContainsKey(targetItem)){numerator += similarUsers[user] * userItemRatings[user][targetItem];denominator += Math.Abs(similarUsers[user]);}}if (denominator == 0){return 0; // 无法预测}return numerator / denominator;}}</string></string></string></string></string></string></string></string></string></string></string></string></string>
로그인 후 복사

이 예에서는 사용자 항목 평가 매트릭스를 구축하고 사용자 기반 협업 필터링 알고리즘을 사용하여 항목에 대한 사용자 평가를 예측합니다. 먼저 타겟 사용자와 유사한 다른 사용자를 계산한 후 유사한 사용자의 평가를 기반으로 예측합니다.

콘텐츠 필터링 추천 알고리즘

콘텐츠 필터링 알고리즘은 아이템의 속성 정보를 기반으로 사용자의 과거 선호도와 유사한 아이템을 추천합니다. 다음은 콘텐츠 필터링을 기반으로 한 .NET 예제입니다.

using System;using System.Collections.Generic;class ContentFiltering{static void Main(){// 物品-属性矩阵Dictionary<string dictionary double>> itemAttributes = new Dictionary<string dictionary double>>{{ "Item1", new Dictionary<string double> { { "Genre", 1.0 }, { "Year", 2010.0 } } },{ "Item2", new Dictionary<string double> { { "Genre", 2.0 }, { "Year", 2015.0 } } },{ "Item3", new Dictionary<string double> { { "Genre", 1.5 }, { "Year", 2020.0 } } }};string targetUser = "User1";// 用户历史喜好List<string> userLikedItems = new List<string> { "Item1", "Item2" };// 基于内容相似性的物品推荐var recommendedItems = RecommendItems(itemAttributes, userLikedItems, targetUser);Console.WriteLine($"为用户 {targetUser} 推荐的物品是: {string.Join(", ", recommendedItems)}");}static List<string> RecommendItems(Dictionary<string dictionary double>> itemAttributes, List<string> userLikedItems, string targetUser){Dictionary<string double> itemScores = new Dictionary<string double>();foreach (var item in itemAttributes.Keys){if (!userLikedItems.Contains(item)){double similarity = CalculateItemSimilarity(itemAttributes, userLikedItems, item, targetUser);itemScores.Add(item, similarity);}}// 根据相似性得分排序物品var sortedItems = itemScores.OrderByDescending(x => x.Value).Select(x => x.Key).ToList();return sortedItems;}static double CalculateItemSimilarity(Dictionary<string dictionary double>> itemAttributes, List<string> userLikedItems, string item1, string targetUser){double similarity = 0.0;foreach (var item2 in userLikedItems){similarity += CalculateJaccardSimilarity(itemAttributes[item1], itemAttributes[item2]);}return similarity;}static double CalculateJaccardSimilarity(Dictionary<string double> attributes1, Dictionary<string double> attributes2){// 计算Jaccard相似性,可以根据属性值的相似性定义不同的相似性度量方法var intersection = attributes1.Keys.Intersect(attributes2.Keys).Count();var union = attributes1.Keys.Union(attributes2.Keys).Count();return intersection / (double)union;}}</string></string></string></string></string></string></string></string></string></string></string></string></string></string></string></string>
로그인 후 복사

이 예제에서는 항목 속성 매트릭스를 구축하고 콘텐츠 필터링 기반 알고리즘을 사용하여 사용자에게 항목을 추천합니다. 아이템 간의 유사도를 계산하고 사용자의 과거 선호도를 바탕으로 유사한 아이템을 추천해 드립니다.

딥러닝 추천 시스템

딥러닝 추천 시스템은 신경망 모델을 사용하여 사용자와 아이템 간의 복잡한 관계를 학습하여 정확한 개인화 추천을 제공합니다. 다음은 PyTorch 라이브러리를 사용하여 간단한 딥 러닝 추천 시스템을 구축하는 방법을 보여주는 .NET 예제입니다.

// 请注意,此示例需要安装PyTorch.NET库using System;using System.Linq;using Python.Runtime;using torch = Python.Runtime.Torch;class DeepLearningRecommendation{static void Main(){// 启动Python运行时using (Py.GIL()){// 创建一个简单的神经网络模型var model = CreateRecommendationModel();// 模拟用户和物品的数据var userFeatures = torch.tensor(new double[,] { { 0.1, 0.2 }, { 0.4, 0.5 } });var itemFeatures = torch.tensor(new double[,] { { 0.6, 0.7 }, { 0.8, 0.9 } });// 计算用户和物品之间的交互var interaction = torch.mm(userFeatures, itemFeatures.T);// 使用模型进行推荐var recommendations = model.forward(interaction);Console.WriteLine("推荐得分:");Console.WriteLine(recommendations);}}static dynamic CreateRecommendationModel(){using (Py.GIL()){dynamic model = torch.nn.Sequential(torch.nn.Linear(2, 2),torch.nn.ReLU(),torch.nn.Linear(2, 1),torch.nn.Sigmoid());return model;}}}
로그인 후 복사

이 예에서는 PyTorch.NET 라이브러리를 사용하여 추천을 위한 간단한 신경망 모델을 만듭니다. 사용자와 아이템의 특징 데이터를 시뮬레이션하고 사용자와 아이템 간의 상호 작용을 계산했습니다. 마지막으로 모델을 사용하여 권장 사항을 제시합니다.

이 문서에서는 협업 필터링, 콘텐츠 필터링, 딥 러닝 추천 시스템을 포함한 추천 알고리즘의 세 가지 일반적인 예를 소개합니다. 이러한 알고리즘의 .NET 구현은 개발자가 다양한 추천 시스템을 더 잘 이해하도록 돕고 사용자에게 맞춤형 추천 서비스를 제공할 수 있습니다. 이러한 샘플 코드를 사용하면 다양한 애플리케이션 시나리오의 요구 사항을 충족하기 위해 더 복잡한 추천 시스템 구축을 시작할 수 있습니다. 이 기사가 도움이 되기를 바랍니다.

위 내용은 프로그램의 기계 학습을 위한 일반적인 추천 알고리즘을 설명하는 예의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python에서 BERT를 사용한 감정 분석 방법 및 단계 Python에서 BERT를 사용한 감정 분석 방법 및 단계 Jan 22, 2024 pm 04:24 PM

BERT는 Google이 2018년에 제안한 사전 훈련된 딥러닝 언어 모델입니다. 전체 이름은 BidirectionEncoderRepresentationsfromTransformers이며 Transformer 아키텍처를 기반으로 하며 양방향 인코딩의 특성을 가지고 있습니다. 기존 단방향 코딩 모델과 비교하여 BERT는 텍스트를 처리할 때 상황 정보를 동시에 고려할 수 있으므로 자연어 처리 작업에서 잘 수행됩니다. 양방향성을 통해 BERT는 문장의 의미 관계를 더 잘 이해할 수 있어 모델의 표현 능력이 향상됩니다. 사전 훈련 및 미세 조정 방법을 통해 BERT는 감정 분석, 이름 지정 등 다양한 자연어 처리 작업에 사용될 수 있습니다.

일반적으로 사용되는 AI 활성화 함수 분석: Sigmoid, Tanh, ReLU 및 Softmax의 딥러닝 실습 일반적으로 사용되는 AI 활성화 함수 분석: Sigmoid, Tanh, ReLU 및 Softmax의 딥러닝 실습 Dec 28, 2023 pm 11:35 PM

활성화 기능은 딥 러닝에서 중요한 역할을 하며 신경망에 비선형 특성을 도입하여 네트워크가 복잡한 입력-출력 관계를 더 잘 학습하고 시뮬레이션할 수 있도록 합니다. 활성화 함수의 올바른 선택과 사용은 신경망의 성능과 훈련 결과에 중요한 영향을 미칩니다. 이 기사에서는 일반적으로 사용되는 네 가지 활성화 함수인 Sigmoid, Tanh, ReLU 및 Softmax를 소개부터 시작하여 사용 시나리오, 장점, 단점과 최적화 솔루션은 활성화 기능에 대한 포괄적인 이해를 제공하기 위해 논의됩니다. 1. 시그모이드 함수 시그모이드 함수 공식 소개: 시그모이드 함수는 실수를 0과 1 사이에 매핑할 수 있는 일반적으로 사용되는 비선형 함수입니다. 통일하기 위해 자주 사용됩니다.

ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. May 30, 2024 am 09:35 AM

이전에 작성했던 오늘은 딥 러닝 기술이 복잡한 환경에서 비전 기반 SLAM(동시 위치 파악 및 매핑)의 성능을 향상할 수 있는 방법에 대해 논의합니다. 심층 특징 추출과 깊이 일치 방법을 결합하여 저조도 조건, 동적 조명, 질감이 약한 영역 및 심한 지터와 같은 까다로운 시나리오에서 적응을 향상하도록 설계된 다목적 하이브리드 시각적 SLAM 시스템을 소개합니다. 우리 시스템은 확장 단안, 스테레오, 단안 관성 및 스테레오 관성 구성을 포함한 여러 모드를 지원합니다. 또한 시각적 SLAM을 딥러닝 방법과 결합하여 다른 연구에 영감을 주는 방법도 분석합니다. 공개 데이터 세트 및 자체 샘플링 데이터에 대한 광범위한 실험을 통해 위치 정확도 및 추적 견고성 측면에서 SL-SLAM의 우수성을 입증합니다.

잠재 공간 임베딩: 설명 및 시연 잠재 공간 임베딩: 설명 및 시연 Jan 22, 2024 pm 05:30 PM

잠재 공간 임베딩(LatentSpaceEmbedding)은 고차원 데이터를 저차원 공간에 매핑하는 프로세스입니다. 기계 학습 및 딥 러닝 분야에서 잠재 공간 임베딩은 일반적으로 고차원 입력 데이터를 저차원 벡터 표현 세트로 매핑하는 신경망 모델입니다. 이 벡터 세트를 "잠재 벡터" 또는 "잠재 벡터"라고 합니다. 인코딩". 잠재 공간 임베딩의 목적은 데이터의 중요한 특징을 포착하고 이를 보다 간결하고 이해하기 쉬운 형식으로 표현하는 것입니다. 잠재 공간 임베딩을 통해 저차원 공간에서 데이터를 시각화, 분류, 클러스터링하는 등의 작업을 수행하여 데이터를 더 잘 이해하고 활용할 수 있습니다. 잠재 공간 임베딩은 이미지 생성, 특징 추출, 차원 축소 등과 같은 다양한 분야에서 폭넓게 응용됩니다. 잠재공간 임베딩이 핵심

하나의 기사로 이해하기: AI, 머신러닝, 딥러닝 간의 연결과 차이점 하나의 기사로 이해하기: AI, 머신러닝, 딥러닝 간의 연결과 차이점 Mar 02, 2024 am 11:19 AM

오늘날 급속한 기술 변화의 물결 속에서 인공지능(AI), 머신러닝(ML), 딥러닝(DL)은 정보기술의 새로운 물결을 이끄는 밝은 별과도 같습니다. 이 세 단어는 다양한 최첨단 토론과 실제 적용에 자주 등장하지만, 이 분야를 처음 접하는 많은 탐험가들에게는 그 구체적인 의미와 내부 연관성이 여전히 수수께끼에 싸여 있을 수 있습니다. 그럼 먼저 이 사진을 보시죠. 딥러닝, 머신러닝, 인공지능 사이에는 밀접한 상관관계와 진보적인 관계가 있음을 알 수 있습니다. 딥러닝은 머신러닝의 특정 분야이며, 머신러닝은

매우 강하다! 딥러닝 알고리즘 상위 10개! 매우 강하다! 딥러닝 알고리즘 상위 10개! Mar 15, 2024 pm 03:46 PM

2006년 딥러닝이라는 개념이 제안된 지 거의 20년이 지났습니다. 딥러닝은 인공지능 분야의 혁명으로 많은 영향력 있는 알고리즘을 탄생시켰습니다. 그렇다면 딥러닝을 위한 상위 10가지 알고리즘은 무엇이라고 생각하시나요? 다음은 제가 생각하는 딥 러닝을 위한 최고의 알고리즘입니다. 이들은 모두 혁신, 애플리케이션 가치 및 영향력 측면에서 중요한 위치를 차지하고 있습니다. 1. 심층 신경망(DNN) 배경: 다층 퍼셉트론이라고도 불리는 심층 신경망(DNN)은 가장 일반적인 딥 러닝 알고리즘으로 처음 발명되었을 때 최근까지 컴퓨팅 성능 병목 현상으로 인해 의문을 제기했습니다. 20년, 컴퓨팅 파워, 데이터의 폭발적인 증가로 돌파구가 찾아왔습니다. DNN은 여러 개의 숨겨진 레이어를 포함하는 신경망 모델입니다. 이 모델에서 각 레이어는 입력을 다음 레이어로 전달하고

CNN 및 Transformer 하이브리드 모델을 사용하여 성능을 향상시키는 방법 CNN 및 Transformer 하이브리드 모델을 사용하여 성능을 향상시키는 방법 Jan 24, 2024 am 10:33 AM

CNN(Convolutional Neural Network)과 Transformer는 다양한 작업에서 뛰어난 성능을 보여준 두 가지 딥 러닝 모델입니다. CNN은 주로 이미지 분류, 타겟 감지, 이미지 분할과 같은 컴퓨터 비전 작업에 사용됩니다. 컨볼루션 연산을 통해 이미지의 국소적 특징을 추출하고, 풀링 연산을 통해 특징 차원 축소 및 공간 불변성을 수행합니다. 반면 Transformer는 기계 번역, 텍스트 분류, 음성 인식 등 자연어 처리(NLP) 작업에 주로 사용됩니다. 이는 self-attention 메커니즘을 사용하여 시퀀스의 종속성을 모델링하고 기존 순환 신경망의 순차적 계산을 피합니다. 이 두 모델은 서로 다른 작업에 사용되지만 시퀀스 모델링에는 유사점이 있으므로

향상된 RMSprop 알고리즘 향상된 RMSprop 알고리즘 Jan 22, 2024 pm 05:18 PM

RMSprop은 신경망의 가중치를 업데이트하는 데 널리 사용되는 최적화 프로그램입니다. 이는 Geoffrey Hinton et al.이 2012년에 제안했으며 Adam 최적화 프로그램의 전신입니다. RMSprop 최적화 프로그램의 출현은 주로 SGD 경사하강법 알고리즘에서 발생하는 경사 소멸 및 경사 폭발과 같은 일부 문제를 해결하기 위한 것입니다. RMSprop 옵티마이저를 사용하면 학습률을 효과적으로 조정하고 가중치를 적응적으로 업데이트하여 딥러닝 모델의 훈련 효과를 향상시킬 수 있습니다. RMSprop 최적화 프로그램의 핵심 아이디어는 서로 다른 시간 단계의 기울기가 가중치 업데이트에 서로 다른 영향을 미치도록 기울기의 가중 평균을 수행하는 것입니다. 특히 RMSprop은 각 매개변수의 제곱을 계산합니다.

See all articles