목차
1. 커널 PCA
2. 다차원 스케일링(MDS)
3、Isomap
4、Locally Linear Embedding(LLE)
5、Spectral Embedding
6、t-Distributed Stochastic Neighbor Embedding (t-SNE)
7、Random Trees Embedding
8、Dictionary Learning
9、Independent Component Analysis (ICA)
10、Autoencoders (AEs)
总结
기술 주변기기 일체 포함 기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

Feb 19, 2024 pm 09:03 PM
기계 학습 비선형 차원 축소

차원성 감소란 데이터 세트의 특징 수를 줄이면서 데이터의 주요 정보를 최대한 유지하는 것을 말합니다. 차원 축소 알고리즘은 비지도 학습이며, 알고리즘은 레이블이 지정되지 않은 데이터를 통해 학습됩니다.

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

다양한 유형의 차원 축소 방법이 있지만 모두 선형과 비선형이라는 두 가지 주요 범주로 분류할 수 있습니다.

선형 방법은 고차원 공간의 데이터를 저차원 공간에 선형적으로 투영합니다(따라서 선형 투영이라는 이름이 붙음). 예로는 PCA와 LDA가 있습니다.

비선형 방법은 비선형 차원 축소를 수행하는 방법으로, 원본 데이터의 비선형 구조를 발견하는 데 자주 사용됩니다. 비선형 차원 축소 방법은 원본 데이터가 선형적으로 쉽게 분리되지 않을 때 특히 중요합니다. 어떤 경우에는 비선형 차원 축소를 매니폴드 학습이라고도 합니다. 이 방법은 고차원 데이터를 보다 효율적으로 처리하고 데이터의 기본 구조를 드러내는 데 도움이 됩니다. 비선형 차원 축소를 통해 데이터 간의 관계를 더 잘 이해하고 데이터에 숨겨진 패턴과 규칙을 발견하며 추가 데이터 분석 및 적용을 위한 강력한 지원을 제공할 수 있습니다.

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

이 기사에서는 일상 작업에서 선택하는 데 도움이 되도록 일반적으로 사용되는 10가지 비선형 차원 축소 기술을 정리했습니다.

1. 커널 PCA

선형 차원 축소 기술인 일반 PCA에 익숙할 것입니다. 커널 PCA는 일반 주성분 분석의 비선형 버전으로 볼 수 있습니다.

차원 축소에는 주성분 분석과 커널 주성분 분석 모두 사용할 수 있지만 선형적으로 분리할 수 없는 데이터를 처리하는 데는 커널 PCA가 더 효과적입니다. 커널 PCA의 주요 장점은 데이터 차원을 줄이면서 비선형 분리 가능한 데이터를 선형 분리 가능한 데이터로 변환하는 것입니다. 커널 PCA는 커널 기술을 도입하여 데이터의 비선형 구조를 캡처함으로써 데이터의 분류 성능을 향상시킬 수 있습니다. 따라서 커널 PCA는 복잡한 데이터 세트를 처리할 때 더 강력한 표현력과 일반화 능력을 갖습니다.

먼저 매우 고전적인 데이터를 만듭니다.

import matplotlib.pyplot as plt plt.figure(figsize=[7, 5])  from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, noise=None, random_state=0)  plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='plasma') plt.title('Linearly inseparable data')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

이 두 색상은 선형적으로 분리할 수 없는 두 가지 범주를 나타냅니다. 이 두 범주를 구분하기 위해 여기서 직선을 그리는 것은 불가능합니다.

일반 PCA부터 시작합니다.

 import numpy as np from sklearn.decomposition import PCA  pca = PCA(n_components=1) X_pca = pca.fit_transform(X)  plt.figure(figsize=[7, 5]) plt.scatter(X_pca[:, 0], np.zeros((100,1)), c=y, s=50, cmap='plasma') plt.title('First component after linear PCA') plt.xlabel('PC1')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

보시다시피 이 두 클래스는 여전히 선형적으로 분리될 수 없습니다. 이제 커널 PCA를 사용해 보겠습니다.

 import numpy as np from sklearn.decomposition import KernelPCA  kpca = KernelPCA(n_components=1, kernel='rbf', gamma=15) X_kpca = kpca.fit_transform(X)  plt.figure(figsize=[7, 5]) plt.scatter(X_kpca[:, 0], np.zeros((100,1)), c=y, s=50, cmap='plasma') plt.axvline(x=0.0, linestyle='dashed', color='black', linewidth=1.2) plt.title('First component after kernel PCA') plt.xlabel('PC1')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

두 클래스는 선형적으로 분리 가능하며 커널 PCA 알고리즘은 서로 다른 커널을 사용하여 데이터를 한 형식에서 다른 형식으로 변환합니다. 커널 PCA는 2단계 프로세스입니다. 첫째, 커널 함수는 원본 데이터를 클래스가 선형으로 분리 가능한 고차원 공간에 일시적으로 투영합니다. 그런 다음 알고리즘은 이 데이터를 n_comComponents 하이퍼파라미터(보존하려는 차원 수)에 지정된 하위 차원으로 다시 투영합니다.

sklearn에는 선형', '폴리', 'rbf' 및 '시그모이드'의 네 가지 커널 옵션이 있습니다. 커널을 "선형"으로 지정하면 일반 PCA가 수행됩니다. 다른 커널은 비선형 PCA를 수행합니다. rbf(방사형 기초 함수) 커널이 가장 일반적으로 사용됩니다.

2. 다차원 스케일링(MDS)

다차원 스케일링은 고차원 데이터 포인트와 저차원 데이터 포인트 사이의 거리를 유지하여 차원 축소를 수행하는 또 다른 비선형 차원 축소 기술입니다. 예를 들어 원래 차원에서 더 가까운 점은 낮은 차원에서도 더 가깝게 나타납니다.

Scikit-learn에서 이를 수행하려면 MDS() 클래스를 사용할 수 있습니다.

 from sklearn.manifold import MDS  mds = MDS(n_components, metric) mds_transformed = mds.fit_transform(X)
로그인 후 복사

메트릭 하이퍼파라미터는 두 가지 유형의 MDS 알고리즘, 즉 메트릭과 비메트릭을 구별합니다. metric=True인 경우 메트릭 MDS를 실행합니다. 그렇지 않으면 비메트릭 MDS를 수행하십시오.

다음 비선형 데이터에 두 가지 유형의 MDS 알고리즘을 적용합니다.

 import numpy as np from sklearn.manifold import MDS  mds = MDS(n_components=1, metric=True) # Metric MDS X_mds = mds.fit_transform(X)  plt.figure(figsize=[7, 5]) plt.scatter(X_mds[:, 0], np.zeros((100,1)), c=y, s=50, cmap='plasma') plt.title('Metric MDS') plt.xlabel('Component 1')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

 import numpy as np from sklearn.manifold import MDS  mds = MDS(n_components=1, metric=False) # Non-metric MDS X_mds = mds.fit_transform(X)  plt.figure(figsize=[7, 5]) plt.scatter(X_mds[:, 0], np.zeros((100,1)), c=y, s=50, cmap='plasma') plt.title('Non-metric MDS') plt.xlabel('Component 1')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

可以看到MDS后都不能使数据线性可分,所以可以说MDS不适合我们这个经典的数据集。

3、Isomap

Isomap(Isometric Mapping)在保持数据点之间的地理距离,即在原始高维空间中的测地线距离或者近似的测地线距离,在低维空间中也被保持。Isomap的基本思想是通过在高维空间中计算数据点之间的测地线距离(通过最短路径算法,比如Dijkstra算法),然后在低维空间中保持这些距离来进行降维。在这个过程中,Isomap利用了流形假设,即假设高维数据分布在一个低维流形上。因此,Isomap通常在处理非线性数据集时表现良好,尤其是当数据集包含曲线和流形结构时。

 import matplotlib.pyplot as plt plt.figure(figsize=[7, 5])  from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, noise=None, random_state=0)  import numpy as np from sklearn.manifold import Isomap  isomap = Isomap(n_neighbors=5, n_components=1) X_isomap = isomap.fit_transform(X)  plt.figure(figsize=[7, 5]) plt.scatter(X_isomap[:, 0], np.zeros((100,1)), c=y, s=50, cmap='plasma') plt.title('First component after applying Isomap') plt.xlabel('Component 1')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

就像核PCA一样,这两个类在应用Isomap后是线性可分的!

4、Locally Linear Embedding(LLE)

与Isomap类似,LLE也是基于流形假设,即假设高维数据分布在一个低维流形上。LLE的主要思想是在局部邻域内保持数据点之间的线性关系,并在低维空间中重构这些关系。

 from sklearn.manifold import LocallyLinearEmbedding lle = LocallyLinearEmbedding(n_neighbors=5,n_components=1) lle_transformed = lle.fit_transform(X) plt.figure(figsize=[7, 5]) plt.scatter(lle_transformed[:, 0], np.zeros((100,1)), c=y, s=50, cmap='plasma') plt.title('First component after applying LocallyLinearEmbedding') plt.xlabel('Component 1')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

只有2个点,其实并不是这样,我们打印下这个数据

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

可以看到数据通过降维变成了同一个数字,所以LLE降维后是线性可分的,但是却丢失了数据的信息。

5、Spectral Embedding

Spectral Embedding是一种基于图论和谱理论的降维技术,通常用于将高维数据映射到低维空间。它的核心思想是利用数据的相似性结构,将数据点表示为图的节点,并通过图的谱分解来获取低维表示。

 from sklearn.manifold import SpectralEmbedding sp_emb = SpectralEmbedding(n_components=1, affinity='nearest_neighbors') sp_emb_transformed = sp_emb.fit_transform(X) plt.figure(figsize=[7, 5]) plt.scatter(sp_emb_transformed[:, 0], np.zeros((100,1)), c=y, s=50, cmap='plasma') plt.title('First component after applying SpectralEmbedding') plt.xlabel('Component 1')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

6、t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE的主要目标是保持数据点之间的局部相似性关系,并在低维空间中保持这些关系,同时试图保持全局结构。

from sklearn.manifold import TSNE tsne = TSNE(1, learning_rate='auto', init='pca') tsne_transformed = tsne.fit_transform(X) plt.figure(figsize=[7, 5]) plt.scatter(tsne_transformed[:, 0], np.zeros((100,1)), c=y, s=50, cmap='plasma') plt.title('First component after applying TSNE') plt.xlabel('Component 1')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

t-SNE好像也不太适合我们的数据。

7、Random Trees Embedding

Random Trees Embedding是一种基于树的降维技术,常用于将高维数据映射到低维空间。它利用了随机森林(Random Forest)的思想,通过构建多棵随机决策树来实现降维。

Random Trees Embedding的基本工作流程:

  • 构建随机决策树集合:首先,构建多棵随机决策树。每棵树都是通过从原始数据中随机选择子集进行训练的,这样可以减少过拟合,提高泛化能力。
  • 提取特征表示:对于每个数据点,通过将其在每棵树上的叶子节点的索引作为特征,构建一个特征向量。每个叶子节点都代表了数据点在树的某个分支上的位置。
  • 降维:通过随机森林中所有树生成的特征向量,将数据点映射到低维空间中。通常使用降维技术,如主成分分析(PCA)或t-SNE等,来实现最终的降维过程。

Random Trees Embedding的优势在于它的计算效率高,特别是对于大规模数据集。由于使用了随机森林的思想,它能够很好地处理高维数据,并且不需要太多的调参过程。

RandomTreesEmbedding使用高维稀疏进行无监督转换,也就是说,我们最终得到的数据并不是一个连续的数值,而是稀疏的表示。所以这里就不进行代码展示了,有兴趣的看看sklearn的sklearn.ensemble.RandomTreesEmbedding

8、Dictionary Learning

Dictionary Learning是一种用于降维和特征提取的技术,它主要用于处理高维数据。它的目标是学习一个字典,该字典由一组原子(或基向量)组成,这些原子是数据的线性组合。通过学习这样的字典,可以将高维数据表示为一个更紧凑的低维空间中的稀疏线性组合。

Dictionary Learning的优点之一是它能够学习出具有可解释性的原子,这些原子可以提供关于数据结构和特征的重要见解。此外,Dictionary Learning还可以产生稀疏表示,从而提供更紧凑的数据表示,有助于降低存储成本和计算复杂度。

 from sklearn.decomposition import DictionaryLearning  dict_lr = DictionaryLearning(n_components=1) dict_lr_transformed = dict_lr.fit_transform(X) plt.figure(figsize=[7, 5]) plt.scatter(dict_lr_transformed[:, 0], np.zeros((100,1)), c=y, s=50, cmap='plasma') plt.title('First component after applying DictionaryLearning') plt.xlabel('Component 1')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

9、Independent Component Analysis (ICA)

Independent Component Analysis (ICA) 是一种用于盲源分离的统计方法,通常用于从混合信号中估计原始信号。在机器学习和信号处理领域,ICA经常用于解决以下问题:

  • 盲源分离:给定一组混合信号,其中每个信号是一组原始信号的线性组合,ICA的目标是从混合信号中分离出原始信号,而不需要事先知道混合过程的具体细节。
  • 特征提取:ICA可以被用来发现数据中的独立成分,提取数据的潜在结构和特征,通常在降维或预处理过程中使用。

ICA的基本假设是,混合信号中的各个成分是相互独立的,即它们的统计特性是独立的。这与主成分分析(PCA)不同,PCA假设成分之间是正交的,而不是独立的。因此ICA通常比PCA更适用于发现非高斯分布的独立成分。

 from sklearn.decomposition import FastICA  ica = FastICA(n_components=1, whiten='unit-variance') ica_transformed = dict_lr.fit_transform(X) plt.figure(figsize=[7, 5]) plt.scatter(ica_transformed[:, 0], np.zeros((100,1)), c=y, s=50, cmap='plasma') plt.title('First component after applying FastICA') plt.xlabel('Component 1')
로그인 후 복사

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

10、Autoencoders (AEs)

到目前为止,我们讨论的NLDR技术属于通用机器学习算法的范畴。而自编码器是一种基于神经网络的NLDR技术,可以很好地处理大型非线性数据。当数据集较小时,自动编码器的效果可能不是很好。

기계 학습의 10가지 비선형 차원 축소 기술 비교 요약

自编码器我们已经介绍过很多次了,所以这里就不详细说明了。

总结

非线性降维技术是一类用于将高维数据映射到低维空间的方法,它们通常适用于数据具有非线性结构的情况。

大多数NLDR方法基于最近邻方法,该方法要求数据中所有特征的尺度相同,所以如果特征的尺度不同,还需要进行缩放。

另外这些非线性降维技术在不同的数据集和任务中可能表现出不同的性能,因此在选择合适的方法时需要考虑数据的特征、降维的目标以及计算资源等因素。

위 내용은 기계 학습의 10가지 비선형 차원 축소 기술 비교 요약의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

15가지 추천 오픈 소스 무료 이미지 주석 도구 15가지 추천 오픈 소스 무료 이미지 주석 도구 Mar 28, 2024 pm 01:21 PM

이미지 주석은 이미지 콘텐츠에 더 깊은 의미와 설명을 제공하기 위해 이미지에 레이블이나 설명 정보를 연결하는 프로세스입니다. 이 프로세스는 비전 모델을 훈련하여 이미지의 개별 요소를 보다 정확하게 식별하는 데 도움이 되는 기계 학습에 매우 중요합니다. 이미지에 주석을 추가함으로써 컴퓨터는 이미지 뒤의 의미와 맥락을 이해할 수 있으므로 이미지 내용을 이해하고 분석하는 능력이 향상됩니다. 이미지 주석은 컴퓨터 비전, 자연어 처리, 그래프 비전 모델 등 다양한 분야를 포괄하여 차량이 도로의 장애물을 식별하도록 지원하는 등 광범위한 애플리케이션을 보유하고 있습니다. 의료영상인식을 통한 질병진단. 이 기사에서는 주로 더 나은 오픈 소스 및 무료 이미지 주석 도구를 권장합니다. 1.마케센스

이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. 이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. Jun 01, 2024 am 10:58 AM

기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

투명한! 주요 머신러닝 모델의 원리를 심층적으로 분석! 투명한! 주요 머신러닝 모델의 원리를 심층적으로 분석! Apr 12, 2024 pm 05:55 PM

일반인의 관점에서 보면 기계 학습 모델은 입력 데이터를 예측된 출력에 매핑하는 수학적 함수입니다. 보다 구체적으로, 기계 학습 모델은 예측 출력과 실제 레이블 사이의 오류를 최소화하기 위해 훈련 데이터로부터 학습하여 모델 매개변수를 조정하는 수학적 함수입니다. 기계 학습에는 로지스틱 회귀 모델, 의사결정 트리 모델, 지원 벡터 머신 모델 등 다양한 모델이 있습니다. 각 모델에는 적용 가능한 데이터 유형과 문제 유형이 있습니다. 동시에, 서로 다른 모델 간에는 많은 공통점이 있거나 모델 발전을 위한 숨겨진 경로가 있습니다. 연결주의 퍼셉트론을 예로 들면, 퍼셉트론의 은닉층 수를 늘려 심층 신경망으로 변환할 수 있습니다. 퍼셉트론에 커널 함수를 추가하면 SVM으로 변환할 수 있다. 이 하나

학습 곡선을 통해 과적합과 과소적합 식별 학습 곡선을 통해 과적합과 과소적합 식별 Apr 29, 2024 pm 06:50 PM

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

우주탐사 및 인간정주공학 분야 인공지능의 진화 우주탐사 및 인간정주공학 분야 인공지능의 진화 Apr 29, 2024 pm 03:25 PM

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 Jun 03, 2024 pm 01:25 PM

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

설명 가능한 AI: 복잡한 AI/ML 모델 설명 설명 가능한 AI: 복잡한 AI/ML 모델 설명 Jun 03, 2024 pm 10:08 PM

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

See all articles