백엔드 개발 파이썬 튜토리얼 Numpy를 사용하여 다차원 배열을 빠르게 생성하기 위한 팁

Numpy를 사용하여 다차원 배열을 빠르게 생성하기 위한 팁

Feb 21, 2024 am 09:15 AM

Numpy를 사용하여 다차원 배열을 빠르게 생성하기 위한 팁

Numpy를 사용하여 다차원 배열을 빠르게 생성하는 팁

Numpy는 Python에서 가장 일반적으로 사용되는 과학 컴퓨팅 라이브러리 중 하나입니다. Numpy는 효율적인 다차원 배열(ndarray) 개체를 제공하고 다양한 배열 연산과 수학 연산을 지원합니다. 데이터 분석 및 수치 계산에서는 다차원 배열을 생성하고 조작해야 하는 경우가 많습니다. 이 기사에서는 Numpy를 사용하여 다차원 배열을 빠르게 생성하는 몇 가지 기술을 소개하고 특정 코드 예제를 첨부합니다.

  1. 1차원 배열 만들기
    Numpy의 1차원 배열은 목록 객체를 사용하여 직접 만들 수 있습니다. 예를 들어, 1부터 5까지의 정수를 포함하는 1차원 배열을 만들려면 다음 코드를 사용할 수 있습니다.

    import numpy as np
    arr = np.array([1, 2, 3, 4, 5])
    print(arr)
    로그인 후 복사

    출력은 [1 2 3 4 5]입니다.

  2. 2차원 배열 만들기
    2차원 배열을 만들 때 목록의 목록을 사용하여 데이터를 행렬 형식으로 표현할 수 있습니다. 예를 들어, 3개의 행과 3개의 열로 구성된 2차원 배열을 만들려면 다음 코드를 사용할 수 있습니다.

    import numpy as np
    arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    print(arr)
    로그인 후 복사

    출력 결과는 다음과 같습니다.

    [[1 2 3]
     [4 5 6]
     [7 8 9]]
    로그인 후 복사

    또한 Numpy에서 제공하는 일부 함수를 사용하여 특정 모양의 2차원 배열. 예를 들어, 3개의 행과 3개의 열이 있는 모두 0인 행렬을 만들려면 다음 코드를 사용할 수 있습니다.

    import numpy as np
    arr = np.zeros((3, 3))
    print(arr)
    로그인 후 복사

    출력 결과는 다음과 같습니다.

    [[0.  0.  0.]
     [0.  0.  0.]
     [0.  0.  0.]]
    로그인 후 복사
  3. 다차원 배열 만들기
    Numpy는 임의 차원의 배열 만들기를 지원합니다. . 예를 들어 행 3개, 열 3개, 깊이 3개의 3차원 배열을 만들려면 다음 코드를 사용할 수 있습니다.

    import numpy as np
    arr = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                    [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                    [[19, 20, 21], [22, 23, 24], [25, 26, 27]]])
    print(arr)
    로그인 후 복사

    출력 결과는 다음과 같습니다.

    [[[ 1 2 3]
      [ 4 5 6]
      [ 7 8 9]]
    
     [[10 11 12]
      [13 14 15]
      [16 17 18]]
    
     [[19 20 21]
      [22 23 24]
      [25 26 27]]]
    로그인 후 복사
  4. Numpy에서 제공하는 함수를 사용하여 배열을 만듭니다. of a 특정 모양
    실제 응용에서는 때때로 특정 모양의 배열을 만들어야 할 때가 있습니다. Numpy는 이러한 배열을 쉽게 생성할 수 있는 몇 가지 기능을 제공합니다. 예:

    • np.zeros(shape): 모두 0으로 구성된 배열을 생성합니다. Shape는 모양을 나타내는 튜플 매개변수입니다.
    • np.ones(shape): 올-원 배열을 생성합니다. 모양 매개변수는 위와 동일합니다.
    • np.full(shape, value): 지정된 모양의 배열을 만듭니다. 각 요소는 동일한 값입니다.
    • np.eye(N): N개의 행과 N개의 열로 구성된 단위 행렬을 만듭니다.
    • np.random.random(shape): 0에서 1 사이의 요소를 사용하여 지정된 모양의 무작위 배열을 만듭니다.

    다음은 몇 가지 예입니다.

    import numpy as np
    
    arr_zeros = np.zeros((2, 3))  # 创建一个2行3列的全零数组
    print(arr_zeros)
    
    arr_ones = np.ones((2, 3))  # 创建一个2行3列的全一数组
    print(arr_ones)
    
    arr_full = np.full((2, 3), 5)  # 创建一个2行3列的数组,每个元素都是5
    print(arr_full)
    
    arr_eye = np.eye(3)  # 创建一个3行3列的单位矩阵
    print(arr_eye)
    
    arr_random = np.random.random((2, 3))  # 创建一个2行3列的随机数组
    print(arr_random)
    로그인 후 복사

    출력 결과는 다음과 같습니다.

    [[0. 0. 0.]
     [0. 0. 0.]]
    
    [[1. 1. 1.]
     [1. 1. 1.]]
    
    [[5 5 5]
     [5 5 5]]
    
    [[1. 0. 0.]
     [0. 1. 0.]
     [0. 0. 1.]]
    
    [[0.34634205 0.24187985 0.32349873]
     [0.76366044 0.10267694 0.07813336]]
    로그인 후 복사

Numpy에서 제공하는 다양한 다차원 배열 생성 기술을 사용하면 다양한 모양의 배열을 쉽게 생성하고 과학 컴퓨팅 및 과학 컴퓨팅에 사용할 수 있습니다. 분석에 사용된 데이터입니다. 동시에 Numpy는 다차원 배열에 대한 컴퓨팅 작업을 효율적으로 처리할 수 있는 풍부한 배열 연산 기능과 수학적 연산 방법도 제공합니다. 과학적 컴퓨팅과 데이터 분석을 위해 Numpy를 사용하는 사용자에게는 다차원 배열을 빠르게 생성하는 기술을 익히는 것이 매우 중요합니다.

위 내용은 Numpy를 사용하여 다차원 배열을 빠르게 생성하기 위한 팁의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Mar 05, 2025 am 09:58 AM

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬의 이미지 필터링 파이썬의 이미지 필터링 Mar 03, 2025 am 09:44 AM

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

Python을 사용하여 PDF 문서를 사용하는 방법 Python을 사용하여 PDF 문서를 사용하는 방법 Mar 02, 2025 am 09:54 AM

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법 Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법 Mar 02, 2025 am 10:10 AM

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬에서 자신의 데이터 구조를 구현하는 방법 파이썬에서 자신의 데이터 구조를 구현하는 방법 Mar 03, 2025 am 09:28 AM

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

파이썬의 병렬 및 동시 프로그래밍 소개 파이썬의 병렬 및 동시 프로그래밍 소개 Mar 03, 2025 am 10:32 AM

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.

See all articles