데이터 베이스 MySQL 튜토리얼 MySQL分表优化_MySQL

MySQL分表优化_MySQL

Jun 01, 2016 pm 01:43 PM
최적화 기사

bitsCN.com 我们的项目中有好多不等于的情况。今天写这篇文章简单的分析一下怎么个优化法。
 
  这里的分表逻辑是根据t_group表的user_name组的个数来分的。
  因为这种情况单独user_name字段上的索引就属于烂索引。起不了啥名明显的效果。
  1、试验PROCEDURE.
 
DELIMITER $$
Drop PROCEDURE `t_girl`.`sp_split_table`$$
Create PROCEDURE `t_girl`.`sp_split_table`()
BEGIN
 declare done int default 0;
 declare v_user_name varchar(20) default '';
 declare v_table_name varchar(64) default '';
 -- Get all users' name.
 declare cur1 cursor for select user_name from t_group group by user_name;
 -- Deal with error or warnings.
 declare continue handler for 1329 set done = 1;
 -- Open cursor.
 open cur1;
 while done 1
 do
  fetch cur1 into v_user_name;
  if not done then
   -- Get table name.
   set v_table_name = concat('t_group_',v_user_name);
   -- Create new extra table.
   set @stmt = concat('create table ',v_table_name,' like t_group');
   prepare s1 from @stmt;
   execute s1;
   drop prepare s1;
   -- Load data into it.
   set @stmt = concat('insert into ',v_table_name,' select * from t_group where user_name = ''',v_user_name,'''');
   prepare s1 from @stmt;
   execute s1;
   drop prepare s1;
  end if;
 end while;
 -- Close cursor.
 close cur1;
 -- Free variable from memory.
 set @stmt = NULL;
END$$
DELIMITER ;
 
  2、试验表。
  我们用一个有一千万条记录的表来做测试。
 
mysql> select count(*) from t_group;
+----------+
| count(*) |
+----------+
| 10388608 |
+----------+
1 row in set (0.00 sec)
 
  表结构。
 
mysql> desc t_group;
+-------------+------------------+------+-----+-------------------+----------------+
| Field   | Type      | Null | Key | Default     | Extra     |
+-------------+------------------+------+-----+-------------------+----------------+
| id     | int(10) unsigned | NO | PRI | NULL       | auto_increment |
| money   | decimal(10,2)  | NO |  |         |        |
| user_name | varchar(20)   | NO | MUL |         |        |
| create_time | timestamp    | NO |  | CURRENT_TIMESTAMP |        |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)
 
  索引情况。
 
mysql> show index from t_group;
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
|Table | Non_unique | Key_name    | Seq_in_index | Column_name |Collation | Cardinality | Sub_part | Packed | Null | Index_type |Comment |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
|t_group |     0 | PRIMARY     |      1 | id     |A    |  10388608 |  NULL | NULL |   | BTREE  |    |
| t_group |     1 | idx_user_name  |     1 | user_name | A    |     8 |  NULL | NULL |   |BTREE   |    |
| t_group |     1 | idx_combination1|      1 | user_name | A    |     8 |  NULL |NULL |   | BTREE   |    |
| t_group |     1 |idx_combination1 |      2 | money   | A    |    3776|  NULL | NULL |   | BTREE   |    |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
4 rows in set (0.00 sec)
 
  PS:
  idx_combination1 这个索引是必须的,因为要对user_name来GROUP BY。此时属于松散索引扫描!当然完了后你可以干掉她。
  idx_user_name 这个索引是为了加快单独执行constant这种类型的查询。
  我们要根据用户名来分表
 mysql> select user_name from t_group where 1 group by user_name;
+-----------+
| user_name |
+-----------+
| david  |
| leo   |
| livia  |
| lucy   |
| sarah  |
| simon  |
| sony   |
| sunny  |
+-----------+
8 rows in set (0.00 sec)
 
  所以结果表应该是这样的。
 
mysql> show tables like 't_group_%';
+------------------------------+
| Tables_in_t_girl (t_group_%) |
+------------------------------+
| t_group_david        |
| t_group_leo         |
| t_group_livia        |
| t_group_lucy        |
| t_group_sarah        |
| t_group_simon        |
| t_group_sony        |
| t_group_sunny        |
+------------------------------+
8 rows in set (0.00 sec)
 
  3、对比结果。
 
mysql> select count(*) from t_group where user_name = 'david';
+----------+
| count(*) |
+----------+
| 1298576 |
+----------+
1 row in set (1.71 sec)
 
  执行了将近2秒。
 
mysql> select count(*) from t_group_david;
+----------+
| count(*) |
+----------+
| 1298576 |
+----------+
1 row in set (0.00 sec)
 
  几乎是瞬间的。
 
mysql> select count(*) from t_group where user_name 'david';
+----------+
| count(*) |
+----------+
| 9090032 |
+----------+
1 row in set (9.26 sec)
执行了将近10秒,可以想象,这个是实际的项目中是不能忍受的。
mysql> select (select count(*) from t_group) - (select count(*) from t_group_david) as total;
+---------+
| total |
+---------+
| 9090032 |
+---------+
1 row in set (0.00 sec)
 
  几乎是瞬间的。
  我们来看看聚集函数。
  对于原表的操作。
 
mysql> select min(money),max(money) from t_group where user_name = 'david';
+------------+------------+
| min(money) | max(money) |
+------------+------------+
|   -6.41 |  500.59 |
+------------+------------+
1 row in set (0.00 sec)
最小,最大值都是FULL INDEX SCAN。所以是瞬间的。
mysql> select sum(money),avg(money) from t_group where user_name = 'david';
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (2.15 sec)
其他聚集函数的结果就不是FULL INDEX SCAN了。耗时2.15秒。
 
  对于小表的操作。
 
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
|   -6.41 |  500.59 |
+------------+------------+
1 row in set (1.50 sec)
 
  最大最小值完全是FULL TABLE SCAN,耗时1.50秒,不划算。以此看来。
 
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (1.68 sec)
 
  取得这两个结果也是花了快2秒,快了一点。
  我们来看看这个小表的结构。
 
mysql> desc t_group_david;
+-------------+------------------+------+-----+-------------------+----------------+
| Field   | Type      | Null | Key | Default     | Extra     |
+-------------+------------------+------+-----+-------------------+----------------+
| id     | int(10) unsigned | NO | PRI | NULL       | auto_increment |
| money   | decimal(10,2)  | NO |  |         |        |
| user_name | varchar(20)   | NO | MUL |         |        |
| create_time | timestamp    | NO |  | CURRENT_TIMESTAMP |        |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)
 
  明显的user_name属性是多余的。那么就干掉它。
 
mysql> alter table t_group_david drop user_name;
Query OK, 1298576 rows affected (7.58 sec)
Records: 1298576 Duplicates: 0 Warnings: 0
 
  现在来重新对小表运行查询
 
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
|   -6.41 |  500.59 |
+------------+------------+
1 row in set (0.00 sec)
 
  此时是瞬间的。
 
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (0.94 sec)
 
  这次算是控制在一秒以内了。
  mysql> Aborted
  小总结一下:分出的小表的属性尽量越少越好。大胆的去干吧
 
 
 
第零空间版权所有
  bitsCN.com

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

오늘 Toutiao에 기사를 게시하여 어떻게 돈을 벌 수 있나요? 오늘 Toutiao에 기사를 게시하여 더 많은 수입을 얻는 방법! 오늘 Toutiao에 기사를 게시하여 어떻게 돈을 벌 수 있나요? 오늘 Toutiao에 기사를 게시하여 더 많은 수입을 얻는 방법! Mar 15, 2024 pm 04:13 PM

1. 오늘 Toutiao에 기사를 게시하여 어떻게 돈을 벌 수 있습니까? 오늘 Toutiao에 기사를 게시하여 더 많은 수입을 얻는 방법! 1. 기본 권익 활성화: 기사의 원본은 광고를 통해 수익을 얻을 수 있으며, 동영상은 가로 화면 모드에서 원본이어야 수익을 얻을 수 있습니다. 2. 팬 100명 권리 활성화: 팬 수가 100명 이상에 도달하면 마이크로 헤드라인, 오리지널 Q&A 작성, Q&A 수익을 얻을 수 있습니다. 3. 독창적인 작품을 고집하라: 독창적인 작품에는 기사, 마이크로 헤드라인, 질문 등이 포함되며, 300단어 이상이어야 합니다. 불법 표절 저작물을 원작으로 출판할 경우 크레딧 점수가 차감되며, 수익금도 차감되므로 주의하시기 바랍니다. 4. 수직성: 전문 분야에서 기사를 작성할 때 분야를 넘나들며 마음대로 기사를 작성할 수 없으며 적절한 추천을 받을 수 없으며, 작품의 전문성과 정확성을 확보할 수 없으며 팬을 유치하기가 어렵습니다. 그리고 독자들. 5. 활동: 높은 활동,

Golang의 gc 최적화 전략에 대한 토론 Golang의 gc 최적화 전략에 대한 토론 Mar 06, 2024 pm 02:39 PM

Golang의 가비지 수집(GC)은 항상 개발자들 사이에서 뜨거운 주제였습니다. 빠른 프로그래밍 언어인 Golang에 내장된 가비지 컬렉터는 메모리를 매우 잘 관리할 수 있지만, 프로그램의 크기가 커질수록 일부 성능 문제가 발생하는 경우가 있습니다. 이 기사에서는 Golang의 GC 최적화 전략을 살펴보고 몇 가지 구체적인 코드 예제를 제공합니다. Golang의 가비지 수집 Golang의 가비지 수집기는 동시 마크 스윕(concurrentmark-s)을 기반으로 합니다.

새 Win11 컴퓨터를 받은 후 설정을 최적화하고 성능을 향상시키는 방법은 무엇입니까? 새 Win11 컴퓨터를 받은 후 설정을 최적화하고 성능을 향상시키는 방법은 무엇입니까? Mar 03, 2024 pm 09:01 PM

새 컴퓨터를 받은 후 성능을 어떻게 설정하고 최적화합니까? 사용자는 개인 정보 보호 및 보안을 직접 열고 일반(광고 ID, 로컬 콘텐츠, 응용 프로그램 실행, 권장 사항 설정, 생산 도구)을 클릭하거나 로컬 그룹 정책을 직접 열 수 있습니다. 새 Win11 컴퓨터를 받은 후 설정을 최적화하고 성능을 향상시키는 방법을 사용자에게 자세히 소개하겠습니다. 하나: 1. [Win+i] 키 조합을 눌러 설정을 연 다음 왼쪽의 [개인정보 및 보안]을 클릭하고 오른쪽의 Windows 권한 아래 일반(광고 ID, 로컬 콘텐츠, 앱 실행, 설정 제안, 생산성)을 클릭하세요. 방법 2.

C++ 프로그램 최적화: 시간 복잡도 감소 기술 C++ 프로그램 최적화: 시간 복잡도 감소 기술 Jun 01, 2024 am 11:19 AM

시간 복잡도는 입력 크기를 기준으로 알고리즘의 실행 시간을 측정합니다. C++ 프로그램의 시간 복잡성을 줄이는 팁에는 데이터 저장 및 관리를 최적화하기 위한 적절한 컨테이너(예: 벡터, 목록) 선택이 포함됩니다. Quick Sort와 같은 효율적인 알고리즘을 활용하여 계산 시간을 단축합니다. 여러 작업을 제거하여 이중 계산을 줄입니다. 불필요한 계산을 피하려면 조건부 분기를 사용하세요. 이진 검색과 같은 더 빠른 알고리즘을 사용하여 선형 검색을 최적화합니다.

심층 해석: Laravel이 달팽이처럼 느린 이유는 무엇입니까? 심층 해석: Laravel이 달팽이처럼 느린 이유는 무엇입니까? Mar 07, 2024 am 09:54 AM

Laravel은 널리 사용되는 PHP 개발 프레임워크이지만 달팽이처럼 느리다는 비판을 받기도 합니다. Laravel의 만족스럽지 못한 속도의 정확한 원인은 무엇입니까? 이 기사에서는 Laravel이 달팽이처럼 느린 이유를 여러 측면에서 심층적으로 설명하고 이를 특정 코드 예제와 결합하여 독자가 이 문제를 더 깊이 이해할 수 있도록 돕습니다. 1. ORM 쿼리 성능 문제 Laravel에서 ORM(Object Relational Mapping)은 매우 강력한 기능입니다.

Laravel 성능 병목 현상 디코딩: 최적화 기술이 완전히 공개되었습니다! Laravel 성능 병목 현상 디코딩: 최적화 기술이 완전히 공개되었습니다! Mar 06, 2024 pm 02:33 PM

Laravel 성능 병목 현상 디코딩: 최적화 기술이 완전히 공개되었습니다! 인기 있는 PHP 프레임워크인 Laravel은 개발자에게 풍부한 기능과 편리한 개발 경험을 제공합니다. 그러나 프로젝트 규모가 커지고 방문 횟수가 늘어나면서 성능 병목 현상에 직면할 수도 있습니다. 이 기사에서는 개발자가 잠재적인 성능 문제를 발견하고 해결하는 데 도움이 되는 Laravel 성능 최적화 기술을 탐구합니다. 1. Eloquent 지연 로딩을 사용한 데이터베이스 쿼리 최적화 Eloquent를 사용하여 데이터베이스를 쿼리할 때 다음을 피하세요.

WIN7 시스템의 시작 항목을 최적화하는 방법 WIN7 시스템의 시작 항목을 최적화하는 방법 Mar 26, 2024 pm 06:20 PM

1. 바탕화면에서 키조합(Win키 + R)을 눌러 실행창을 연 후, [regedit]를 입력하고 Enter를 눌러 확인하세요. 2. 레지스트리 편집기를 연 후 [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorer]를 클릭하여 확장한 다음 디렉터리에 Serialize 항목이 있는지 확인합니다. 없으면 탐색기를 마우스 오른쪽 버튼으로 클릭하고 새 항목을 생성한 다음 이름을 Serialize로 지정합니다. 3. 그런 다음 직렬화를 클릭한 다음 오른쪽 창의 빈 공간을 마우스 오른쪽 버튼으로 클릭하고 새 DWORD(32) 비트 값을 만들고 이름을 Star로 지정합니다.

Laravel 성능 병목 현상 공개: 최적화 솔루션 공개! Laravel 성능 병목 현상 공개: 최적화 솔루션 공개! Mar 07, 2024 pm 01:30 PM

Laravel 성능 병목 현상 공개: 최적화 솔루션 공개! 인터넷 기술이 발전함에 따라 웹사이트와 애플리케이션의 성능 최적화가 점점 더 중요해지고 있습니다. 널리 사용되는 PHP 프레임워크인 Laravel은 개발 프로세스 중에 성능 병목 현상에 직면할 수 있습니다. 이 문서에서는 Laravel 애플리케이션이 직면할 수 있는 성능 문제를 살펴보고 개발자가 이러한 문제를 더 잘 해결할 수 있도록 몇 가지 최적화 솔루션과 특정 코드 예제를 제공합니다. 1. 데이터베이스 쿼리 최적화 데이터베이스 쿼리는 웹 애플리케이션의 일반적인 성능 병목 현상 중 하나입니다. 존재하다

See all articles