목차
6(QA) 엔지니어의 향후 업무. “미래에는 자연어가 더 많은 코드 생성과 테스트를 통해 생성된 코드를 확인할 가능성이 높습니다. AI 에이전트는 대부분의 작업을 수행하며 개발자는 이러한 에이전트가 따라야 할 프로그래밍 목표와 제약 조건을 설정해야 합니다.” Carter는 이어서 다음과 같이 과감하게 예측했습니다. “이에 따르면 AI 에이전트는 런타임 시 프로그램의 동작을 분석하고 알 수 없는 요소를 조사하여 과거 개발자가 할 수 없었던 QA, 관찰 가능성 및 보안 작업을 수행할 수 있습니다.” , 개발자는 높은 수준의 관점에서 시스템 아키텍처, 비기능 및 운영 요구 사항을 정의하여 Generative AI
Launchdarkly 개발자 경험 디렉터 " >은 다음과 같이 믿습니다. “인간 개발자에게 친숙한 전통적인 코드 개발 관점 외에도 또 다른 숨겨진 관점이 나타날 것입니다. 비록 이 관점은 인간을 위한 것이지만, 가독성은 떨어지지만 AI가 수행하는 컴파일러와 해석기에 의해 완전히 이해될 수 있습니다. 이는 다른 코드의 중간 계층 역할을 하여 소위 AI 보안 최적화에 대한 방어적인 관점을 제공합니다. "그러나 일부 사람들은 AI에 대해 의문을 제기합니다. 보안 식별 기능이 정확하고 효율적인지 여부. 개발 프로세스 개선을 위한 高9.iAI Launchdarkly 개발자 경험 디렉터
기술 주변기기 일체 포함 생성 AI가 소프트웨어 개발을 변화시키는 10가지 방법

생성 AI가 소프트웨어 개발을 변화시키는 10가지 방법

Mar 11, 2024 pm 12:10 PM
일체 포함 소프트웨어 개발 overflow 소프트웨어 프로그래밍

번역자 | Chen Jun

Reviewer | Chonglou

지난 세기90시대에는 사람들이 소프트웨어 프로그래밍을 언급할 때 일반적으로 코드를 확인하는 것을 의미했습니다. CVS 또는 SVN 코드 저장소를 삭제하고 코드를 실행 파일로 컴파일합니다. EclipseVisual Studio와 같은 해당 통합 개발 환경(IDE)은 프로그래밍, 개발, 문서화, 구성, 테스트, 배포 및 기타 단계를 전체 소프트웨어 개발 수명 주기에 통합할 수 있습니다( SDLC), 개발자 생산성이 향상됩니다.

생성 AI가 소프트웨어 개발을 변화시키는 10가지 방법

최근 몇 년 동안 널리 사용되는 클라우드 컴퓨팅과 DevSecOps자동화 도구는 개발자의 포괄적인 역량을 향상시켜 더 많은 기업이 소프트웨어 애플리케이션을 더 쉽게 개발, 배포 및 유지 관리할 수 있게 되었습니다.

현재 생성 AI는 차세대 개발 패러다임 전환의 촉매제 역할을 하며 기업이 소프트웨어를 생성 및 유지 관리하는 방식을 바꾸고 새로운 개발 도구와 패러다임을 가져올 것으로 예상됩니다. 이에 대해 많은 개발자는 AI가 우리가 알고 있는 프로그래밍 기술의 종말을 가져올지 궁금해하기 시작했습니다 . 동시에 다양한 기업의 IT 리더들도 AI가 향후 10년 동안 SDLCDevSecOps 개발에 어떤 영향을 미칠지 고려하고 있습니다. 이 두 가지 질문에 대해 저는 귀하와 협력하여 아래 답변을 찾을 것입니다.

생성 AI는 새로운 도구인가요, 아니면 새로운 개발 방식인가요?

PulumiCEO Joe Duffy는 다음과 같이 믿습니다. “AI는 프로그래밍 자동화를 향상하고 기업의 생산성과 성과를 크게 향상시켜 인간 작업의 추상화 수준을 향상시킬 것입니다. . , 실제로 프로그래밍을 대체하지는 않습니다. Thomvest Ventures의 책임자인 Ashish Kakran은 다음과 같이 믿습니다. “개발 및 DevOps 팀은 더욱 정교해질 것입니다.

동시에 생성 AI의 기능이 지속적으로 향상됨에 따라 개발자의 책임도 그에 따라 조정될 것입니다.

Matillion회사의 CTO인 Ed Thompson은 다음과 같이 믿습니다. “Copilots은 실제로 개발자의 생산성을 높이고 Copilots을 생각하는 사람들을 더 생산적으로 만듭니다. 사람들은 개발자의 임무가 실제 문제를 해결하는 것이 아니라 단지 코드를 작성하는 것이라고 잘못 생각하기 때문에 프로그래밍 환경을 근본적으로 변화시켰습니다.” 그렇다면 생성적 AI는 어떻게 변화하는가? 세계? 1.

자연어 프롬프트를 기반으로 표준 코드 생성

Astronomer

Airflow 엔지니어링 이사 Kaxil Naik 생각: “ AI가 생성한 코드 템플릿 , 그리고 AI 지원 Copilot은 자연어를 기능 코드로 변환하여 복잡한 코드 기반에 대한 이해를 단순화하고 개발 모범 사례를 준수하도록 보장합니다. 프로그래밍 작업을 더 쉽게 만들어줍니다. StackOverflow

2023

연도 개발자 설문조사에 따르면 개발자의 70%가 개발 과정에서 AI 도구를 사용하고 있거나 사용할 계획을 갖고 있는 것으로 나타났습니다. 개발에 AI를 사용한 사람들 중 82% 이상이 AI를 사용하여 소프트웨어 코드를 작성했습니다. 이러한 수치는 개발자가 코드를 작성하고, 기존 코드를 재사용하고, 구성 요소를 구축하는 전통적인 방식이 패러다임 전환을 겪고 있음을 보여주기에 충분합니다. 2.코드 검증은 개발자의 중요한 책임입니다

프로그래밍을 더 쉽고 효율적으로 만드는 것 외에도 개발자는 많은 시간을 투자하고 효율적으로 사용하는 중요한 책임을 져야 합니다. 생성된 코드의 보안 문제나 성능 결함을 방지하기 위해 코드를 확인합니다.

Sonar의 개발자 관계 책임자 Peter McKee는 "개발자들이 생산성 향상을 위해 AI를 점점 더 많이 채택함에 따라 AI에서 생성된 콘텐츠를 포괄적으로 검토할 책임이 있습니다."라고 믿습니다. 프로그래밍에 따라 청소하면 배송 중 지속적인 검사와 모니터링이 보장됩니다. 결과적으로 개발자는 수동으로 생성되거나 AI가 생성한 코드에서 잠재적인 오류와 취약점을 수정하는 대신 새로운 작업에 더 많은 시간을 할애할 수 있습니다. McKee는 다음과 같이 덧붙였습니다. “개발자가 자동화를 사용하여 AI 생성 코드를 스캔하고 모니터링하지 못한다면 수정해야 할 코드와 기술 부채가 기하급수적으로 증가할 것입니다. 대기업을 위한 새로운 개발 모델

생성적 AI

도구를 사용하여 코드를 개발하는 방법 대기업에서는 개발자가 더 적은 코드로만 지원하는 경우 수천 개의 응용 프로그램 도구와 표준이 지원됩니다. 생성적

AI에서 개발한 코드로 작성 및 추가 통합, 대기업의 개발 모습 Red Hat에서 개발

Markus Eisele, 도구 및 전략 홍보 부서 “다양한 팀을 위한 다양한 도구 조합은 개발자 간의 인지적 차이 증가는 말할 것도 없고 표준화 및 통합 개발 관행의 부족으로 이어질 것입니다. "AI로 구축된 중앙 집중식 개발 포털은 개발팀의 쉬운 액세스를 촉진하고 협업 프로세스의 마찰을 제거하여 팀 간 애플리케이션에 대한 모범 사례를 달성할 수 있습니다. 이는 통합 개발 환경이 컴퓨터와 유사한 조립 플랫폼으로 전환될 수 있음을 의미합니다. - 제조 분야의 보조 설계(CAD) 또는 건설 분야의 건축 정보 모델링(BIM)에서 초점은 맞춤형 구성요소 제작에서 기존 구성요소 조립으로 전환됩니다. 내장된 도구를 활용하여 설계를 검증합니다. 4.프로그래밍 감소, 코드 공급망 위험 증가

generative AI

로 개발된 코드 사용의 또 다른 영향에는 비즈니스 리더가 관련 정책을 개발하는 방법과 모니터링 방법이 포함됩니다. 기업 애플리케이션에 어떤 공급망 코드가 포함되어 있는지, 기업이 계속 추적해야 하는 것은 오픈 소스 및 상용 소프트웨어 구성 요소입니다. 앞으로는

생성 AI를 추가해야 합니다. Sonatype의 현장 CTO Ilkka Turunen

은 다음과 같이 믿습니다. “개발자는 AI 공급망을 유지하고 관리하는 데 중요한 역할을 해야 합니다. 그들은 일상적인 작업에서 AI 모델의 안전성, 신뢰성 및 출처에 대해 더욱 엄격한 검토를 수행할 것입니다. AI 위험 평가를 구현하고 AI 모델 BOM을 적절하게 관리함으로써 기업은 개발 인프라에 적절한 AI 보안 및 관리 기능이 있는지 확인해야 합니다. ”실제로 SAST,

DAST 및 기타 보안 및 코드 관리 도구는 코드 스캔 자동화를 개선하고 개발자가 코드를 엔터프라이즈 리포지토리에 통합하여 여부를 확인하는 데 도움을 줄 수 있습니다. generative AI의 출력 코드는 보안 정책을 준수합니다. 5.새로운 모델의 가속화된 통합

지난 10년 동안 응용 프로그래밍 인터페이스( API ),

IFTTTSaaS 통합 플랫폼, 서비스형 통합 플랫폼(iPaaS) 및 기타 생태계 기술을 통해 개발자의 코드 통합 능력이 엄청나게 향상되었습니다. 개발자는 생성 AI를 사용하여 시각적 프로세스의 코드 없는 통합을 갖춘 제품을 구축할 수 있습니다. SAP AI 및 혁신 팀에서 일하는 Emmanuel Cassimatis는 다음과 같이 믿습니다. 주기는 항상 분산되어 있었습니다. AI는 다양한 애플리케이션에서 데이터를 마이닝하고 통합 통합 수준을 달성하여 개발자 간의 협업을 강화할 수 있습니다. ”

6(QA) 엔지니어의 향후 업무. “미래에는 자연어가 더 많은 코드 생성과 테스트를 통해 생성된 코드를 확인할 가능성이 높습니다. AI 에이전트는 대부분의 작업을 수행하며 개발자는 이러한 에이전트가 따라야 할 프로그래밍 목표와 제약 조건을 설정해야 합니다.” Carter는 이어서 다음과 같이 과감하게 예측했습니다. “이에 따르면 AI 에이전트는 런타임 시 프로그램의 동작을 분석하고 알 수 없는 요소를 조사하여 과거 개발자가 할 수 없었던 QA, 관찰 가능성 및 보안 작업을 수행할 수 있습니다.” , 개발자는 높은 수준의 관점에서 시스템 아키텍처, 비기능 및 운영 요구 사항을 정의하여 Generative AI

가 코드 개발 및 자동 테스트를 직접 수행하는 대신 수행하도록 안내할 수 있습니다. 7.AI는 SDLC

현재 Copilots 및 다수의 여러 단계에서 도입되고 있습니다.

Generative AI도구는 주로 초점을 맞춥니다. 프로그래밍을 위해 사용 중이지만 새로운 기능은 SDLC의 다른 단계도 변경합니다. Gigster

의 수석 솔루션 엔지니어인 Humberto Moreira는 다음과 같이 믿습니다. “생성 AI가 SDLC에 통합됨에 따라 다양한 모델이 가장 적합한 특정 주기 단계를 갖게 됩니다. 예를 들어 모델 A는 요구 사항에 맞게 최적화될 수 있습니다. B 모델은 코드 개발을 목표로 하고, C 모델은 QA를 목표로 합니다. "

사실 다양한 도구가 더 강력한 테스트 케이스를 제공하고 더 빠른 코드 변경을 제공할 수 있기 때문입니다. 피드백이므로 생성 모델로 전환합니다. AI 모델은 QA에 어느 정도 영향을 미쳤습니다. Descope의 공동 창립자인 Gilad Shriki는 다음과 같이 말했습니다. “AI가 부상함에 따라 SDK에서 테스트, 문서화에 이르기까지 소프트웨어 엔지니어링을 둘러싼 모든 측면이 생성 AI의 지원을 받게 될 것입니다. 개발자는 특정 AI 사용 형식을 사용하여 자신의 작업을 기록해야 합니다. ”8.개발 역할 세분화소프트웨어 개발에서 생성 AI의 역할은 현재의 전통적인 인간 개발 기능에서 바뀔 수 있습니다. 즉, 기계가 수행하는 다양한 코드 생성기, 컴파일러 및 기타 개발 부문 역할이 점차 등장할 것입니다.

Chainguard 엔지니어링 부사장 Dustin Kirkland

은 다음과 같이 믿습니다. “인간 개발자에게 친숙한 전통적인 코드 개발 관점 외에도 또 다른 숨겨진 관점이 나타날 것입니다. 비록 이 관점은 인간을 위한 것이지만, 가독성은 떨어지지만 AI가 수행하는 컴파일러와 해석기에 의해 완전히 이해될 수 있습니다. 이는 다른 코드의 중간 계층 역할을 하여 소위 AI 보안 최적화에 대한 방어적인 관점을 제공합니다. "그러나 일부 사람들은 AI에 대해 의문을 제기합니다. 보안 식별 기능이 정확하고 효율적인지 여부. 개발 프로세스 개선을 위한 高9.iAI Launchdarkly 개발자 경험 디렉터

Cody de Arkland세대 AI, 대화식 공식 및 대화식 공식 사용을 제안했습니다. 사용 사례 알아보기 소프트웨어 애플리케이션의 신뢰성과 운용성을 향상시키는 데 도움이 됩니다. 여기에는 다음이 포함됩니다.

학습되고 만족스러운 디자인 표준을 준수하는 웹 애플리케이션 구성 요소를 개발하고 생성합니다.

개발자가 새로운 기능을 생성한 것을 감지하면 해당 기능 태그를 생성합니다.

새로 시작 문제가 발견되면 롤백할 수 있는 기능을 갖춘 소프트웨어 배포(

CI/CD) 배포 후 실행이 아닌 사용자 지정 실행을 통해 QA에 실시간 가시성을 제공 피드백 루프

    물론 이러한 사용 사례에는 어떤 차세대 개발 및
  • SRE 기능이
  • 제너레이티브 AI
  • 를 활성화하거나 향상시킬 것인지에 대한 질문도 함께 제공됩니다.
  • 10. 기업이 경계해야 할 AI 위험
  • generative AI
  • SDLC

전반에 걸쳐 더 많이 관여함에 따라 새로운 질문이 발생할 수 있습니다. 즉, 제너레이티브 AI발생할 수 있는 지적재산권(코드 및 데이터 포함) 등의 위험. 이를 위해 기업은 이익이 위험보다 더 큰지 평가해야 합니다.

TabnineEcosystem시스템 및 비즈니스 개발 담당 부사장Brandon Jung은 다음과 같이 믿습니다. 모델에 입력되는 데이터, 특히 훈련 세트의 데이터에 세심한 주의를 기울여야 하며, 평가하고 평가하는 데 시간과 에너지를 소비해야 합니다. 회사의 가장 귀중한 자산--코드 및 데이터를 보호하기 위해 AI 모델을 선택하세요.

아직 Generative AI를 사용한 소프트웨어 개발의 초기 단계에 있지만, Generative AI알고리즘과 이를 지원하는 도구가 기업을 보호하기 위한 안전 장치를 구축할 수 있는지 여부는 아직 지켜봐야 합니다. 이는 대부분 생성 AI의 소프트웨어 개발, 테스트, 배포 및 유지 관리 능력에 달려 있습니다.

번역자 소개

Julian Chen, 51CTO 커뮤니티 편집자는 10년 이상의 IT 프로젝트 구현 경험을 가지고 있으며, 내부 및 외부 자원과 위험을 통제하는 데 능숙하며 네트워크 확산에 중점을 두고 있습니다. 정보 보안 지식과 경험.

원제: 생성 AI가 소프트웨어 개발을 변화시키는 10가지 방법, 저자: Isaac Sacolick

위 내용은 생성 AI가 소프트웨어 개발을 변화시키는 10가지 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

2009-2025년 탄생 이후 비트코인 ​​가격 BTC 역사적 가격에 대한 가장 완벽한 요약 2009-2025년 탄생 이후 비트코인 ​​가격 BTC 역사적 가격에 대한 가장 완벽한 요약 Jan 15, 2025 pm 08:11 PM

2009년 창립 이래 비트코인은 암호화폐 세계의 리더가 되었으며 가격은 큰 변동을 겪었습니다. 포괄적인 역사적 개요를 제공하기 위해 이 기사에서는 2009년부터 2025년까지의 비트코인 ​​가격 데이터를 수집하여 주요 시장 이벤트, 시장 정서 변화, 가격 변동에 영향을 미치는 중요한 요소를 다룹니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. Aug 01, 2024 pm 09:40 PM

1일 본 사이트 소식에 따르면 SK하이닉스는 오늘(1일) 블로그 게시물을 통해 8월 6일부터 8일까지 미국 캘리포니아주 산타클라라에서 열리는 글로벌 반도체 메모리 서밋 FMS2024에 참가한다고 밝혔다. 많은 새로운 세대의 제품. 인공지능 기술에 대한 관심이 높아지고 있는 가운데, 이전에는 주로 NAND 공급업체를 대상으로 한 플래시 메모리 서밋(FlashMemorySummit)이었던 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage) 소개를 올해는 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage)으로 명칭을 변경했습니다. DRAM 및 스토리지 공급업체와 더 많은 플레이어를 초대하세요. SK하이닉스가 지난해 출시한 신제품

Iyo One: 헤드폰 부분, 오디오 컴퓨터 부분 Iyo One: 헤드폰 부분, 오디오 컴퓨터 부분 Aug 08, 2024 am 01:03 AM

언제나 집중은 미덕이다. 저자 | 편집자 Tang Yitao | Jing Yu 인공지능의 부활은 하드웨어 혁신의 새로운 물결을 불러일으켰습니다. 가장 인기 있는 AIPin은 전례 없는 부정적인 평가를 받았습니다. Marques Brownlee(MKBHD)는 이 제품을 자신이 리뷰한 제품 중 최악이라고 말했습니다. The Verge 편집자 David Pierce는 누구에게도 이 장치를 구입하지 말라고 말했습니다. 경쟁사인 RabbitR1도 그다지 좋지 않습니다. 이 AI 장치에 대한 가장 큰 의심은 그것이 분명히 단순한 앱이지만 Rabbit은 200달러짜리 하드웨어를 만들었다는 것입니다. 많은 사람들은 AI 하드웨어 혁신을 스마트폰 시대를 전복하고 이에 전념할 수 있는 기회로 보고 있습니다.

AI와 같은 시장을 개척하는 GlobalFoundries는 Tagore Technology의 질화 갈륨 기술 및 관련 팀을 인수합니다. AI와 같은 시장을 개척하는 GlobalFoundries는 Tagore Technology의 질화 갈륨 기술 및 관련 팀을 인수합니다. Jul 15, 2024 pm 12:21 PM

7월 5일 이 웹사이트의 소식에 따르면 글로벌파운드리는 올해 7월 1일 보도자료를 통해 타고르 테크놀로지(Tagore Technology)의 전력질화갈륨(GaN) 기술 및 지적재산권 포트폴리오 인수를 발표하고 자동차와 인터넷 시장 점유율 확대를 희망하고 있다고 밝혔다. 더 높은 효율성과 더 나은 성능을 탐구하기 위한 사물 및 인공 지능 데이터 센터 응용 분야입니다. 생성 AI와 같은 기술이 디지털 세계에서 계속 발전함에 따라 질화갈륨(GaN)은 특히 데이터 센터에서 지속 가능하고 효율적인 전력 관리를 위한 핵심 솔루션이 되었습니다. 이 웹사이트는 이번 인수 기간 동안 Tagore Technology의 엔지니어링 팀이 GLOBALFOUNDRIES에 합류하여 질화갈륨 기술을 더욱 개발할 것이라는 공식 발표를 인용했습니다. G

중국 과학기술대학교 휴머노이드 로봇 연구소가 공개돼 양쯔강 삼각주 휴머노이드 로봇 연합 결성을 발표했다. 중국 과학기술대학교 휴머노이드 로봇 연구소가 공개돼 양쯔강 삼각주 휴머노이드 로봇 연합 결성을 발표했다. Jun 19, 2024 pm 12:59 PM

이 사이트는 오늘 오전 중국 과학기술대학교 인공지능 및 휴머노이드 로봇 프론티어 포럼이 학교 첨단단지에서 열렸다고 18일 보도했다. 중국 과학기술대학교 인공지능 및 데이터 과학부와 휴머노이드 로봇 연구소가 속속 공개됐다. 휴머노이드 로봇 연구소 기술위원회는 장강 삼각주 휴머노이드 로봇 연합의 설립을 발표했습니다. USTC 휴머노이드 로봇 연구소는 USTC의 다학제적 장점을 활용하고 재료 감지, 구조 작동, 모션 제어 및 구체화된 지능 분야에서 기술 혁신을 위해 노력하여 지능형 분야에서 USTC의 발전을 촉진하는 데 전념하고 있습니다. 로봇. 연구소는 기술혁신을 바탕으로 서비스, 의료, 교육 등 분야에서 휴머노이드 로봇의 활용을 적극 추진하고,

See all articles