350억 개의 매개변수와 개방형 가중치를 갖춘 Transformer의 저자는 자신의 사업을 시작한 후 새로운 대형 모델을 출시했습니다.
오늘, 트랜스포머의 저자 중 한 명인 에이든 고메즈가 공동 창업한 인공지능 스타트업 코히어(Cohere)가 자체 대형 모델의 출시를 환영했습니다.
Cohere의 최신 출시 모델은 "Command-R"이라는 이름으로 35B 매개변수를 가지며 대규모 생산 작업 부하를 처리하도록 설계되었습니다. 이 모델은 높은 효율성과 높은 정확성의 균형을 통해 "확장 가능" 범주에 속하며 기업 사용자가 개념 증명을 넘어 프로덕션으로 이동할 수 있도록 지원합니다.
Command-R은 RAG(Retrieval Augmented Generation) 및 기타 긴 컨텍스트 작업에 특별히 최적화된 생성 모델입니다. 이 모델은 외부 API와 도구를 결합하여 RAG 애플리케이션의 성능을 향상시키는 것을 목표로 합니다. 업계 최고의 임베딩 및 재정렬 모델과 함께 작동하여 기업 사용 사례에 맞는 뛰어난 성능과 동급 최고의 통합 기능을 제공합니다.
Command-R은 최적화된 변환기 아키텍처를 채택하고 자동 회귀 언어 모델입니다. 사전 훈련이 완료된 후에는 SFT(Supervised Fine-Tuning) 및 선호도 훈련을 통해 모델이 인간의 선호도와 일치하도록 보장하여 더 나은 유용성과 안전성을 달성합니다.
특히 Command-R에는 다음과 같은 기능적 특징이 있습니다.
- RAG 및 도구 사용의 높은 정확성
- 낮은 대기 시간, 높은 처리량
- 더 긴 128k 컨텍스트 및 저렴한 가격
- 10개 주요 언어에 대한 강력한 기능
- 연구 및 평가를 위해 HuggingFace에서 모델 가중치를 사용할 수 있습니다.
Command-R은 현재 Cohere의 관리형 API에서 사용할 수 있으며 계획에 따라 주요 클라우드 제공업체에서 곧 사용할 수 있을 예정입니다. 이 릴리스는 기업의 대량 채택에 중요한 기능을 발전시키도록 설계된 일련의 모델 중 첫 번째입니다.
현재 코히어에서는 Huggingface에 모델 웨이트를 오픈했습니다. Huggingface 주소 : https://huggingface.co/cohereforai/c4ai-command-r-v01 high-performance 검색 강화 생성 (rag)
reverieval 향상 생성 (RAG) 대규모 언어 모델 배포의 핵심 패턴이 되었습니다. RAG를 통해 기업은 모델에 다른 방법으로는 사용할 수 없는 개인 지식에 대한 액세스 권한을 부여하고, 개인 데이터베이스를 검색하고, 관련 정보를 사용하여 응답을 작성함으로써 정확성과 유용성을 크게 높일 수 있습니다. RAG의 주요 구성 요소는 다음과 같습니다.
검색: 응답 사용자와 관련된 정보 모음을 검색합니다.
증강 생성: 검색된 정보를 사용하여 더 많은 정보를 바탕으로 응답합니다.
- 검색의 경우 Cohere의 Embed 모델은 수백만, 심지어 수십억 개의 문서를 검색하여 상황적, 의미적 이해를 향상시켜 검색 단계의 유용성과 정확성을 크게 높입니다. 동시에 Cohere의 Rerank 모델은 검색된 정보의 가치를 더욱 높이는 데 도움이 되며 관련성 및 개인화와 같은 맞춤형 지표에 대한 결과를 최적화합니다.
- 향상된 세대를 위해 Command-R은 가장 관련성이 높은 정보를 식별함으로써 이 정보를 요약, 분석 및 패키지화하고 직원이 업무 효율성을 향상하거나 새로운 제품 경험을 창출하도록 도울 수 있습니다. Command-R은 모델의 출력에 명확한 인용이 포함되어 환각의 위험을 줄이고 원본 자료에서 더 많은 맥락을 제공한다는 점에서 독특합니다.
- 자체 Embed 및 Rerank 모델을 사용하지 않더라도 Command-R은 확장 가능한 생성 모델 범주에서 다른 모델보다 성능이 뛰어납니다. 그러나 함께 사용하면 리드가 크게 확장되어 더 복잡한 도메인에서 더 높은 성능을 발휘할 수 있습니다.
아래 왼쪽 그림은 유창성, 답변 실용성 및 인용을 고려하여 일련의 기업 관련 RAG 애플리케이션에 대해 전반적인 일대일 인간 선호도 평가를 수행하는 Command-R과 Mixtral을 보여줍니다. 그림의 오른쪽은 Command-R(Embed+Rerank), Command-R과 Llama 2 70B(채팅), Mixtral, GPT3.5-Turbo 및 기타 모델을 Natural Question, TriviaQA 및 벤치마크와 같은 벤치마크에서 비교한 결과를 보여줍니다. 핫팟QA. Cohere의 빅 모델이 선두를 차지했습니다.
강력한 도구 사용
큰 언어 모델은 단순히 텍스트를 추출하고 생성하는 기계가 아니라 작업을 자동화하고 실제 조치를 취할 수 있는 핵심 추론 엔진이어야 합니다. Command-R은 모델이 매우 복잡한 작업을 자동화할 수 있도록 하는 코드 해석기 및 기타 사용자 정의 도구와 같은 도구(API)를 사용하여 이러한 목표를 달성합니다.
도구 사용 기능을 통해 기업 개발자는 Command-R을 엔진으로 전환하여 "데이터베이스 및 소프트웨어 도구와 같은 내부 인프라"는 물론 CRM 및 검색 엔진과 같은 외부 도구의 사용이 필요한 작업 및 워크플로를 지원할 수 있습니다. " 자동화. 이를 통해 여러 시스템에 걸쳐 복잡한 추론과 의사 결정이 필요한 시간 소모적인 수동 작업을 자동화할 수 있습니다.
아래 그림은 검색 도구 사용 시 Command-R과 Llama 2 70B(채팅), Mixtral 및 GPT3.5-turbo 간의 다단계 추론 기능을 비교한 것입니다. 여기에 사용된 데이터 세트는 HotpotQA와 Bamboogle입니다.
다국어 생성 기능
Command-R 모델은 영어, 프랑스어, 스페인어, 이탈리아어, 독일어, 포르투갈어, 일본어, 한국어, 아랍어와 중국어.
또한 Cohere의 Embed 및 Rerank 모델은 기본적으로 100개 이상의 언어를 지원합니다. 이를 통해 사용자는 다양한 데이터 소스에서 답변을 도출하고 언어에 관계없이 모국어로 명확하고 정확한 대화를 전달할 수 있습니다.
아래 그림은 다국어 MMLU 및 FLORES에서 Command-R과 Llama 2 70B(채팅), Mixtral, GPT3.5-turbo를 비교한 것입니다.
더 긴 컨텍스트 및 저렴한 가격
Command-R은 더 긴 컨텍스트 창(128k 토큰)을 지원합니다. 또한 이번 업그레이드는 Cohere의 관리형 API 가격을 낮추고 Cohere 프라이빗 클라우드 배포의 효율성을 크게 높입니다. 더 긴 컨텍스트 창과 더 저렴한 가격을 결합함으로써 Command-R은 추가 컨텍스트가 성능을 크게 향상시킬 수 있는 RAG 사용 사례를 잠금 해제합니다.
구체적인 가격은 다음과 같습니다. Command 버전은 입력 토큰 100만 개에 1달러, 출력 토큰 100만 개는 2달러입니다. Command-R 버전은 입력 토큰 100만 개에 미화 0.5달러, 100만 개의 출력 토큰에 대한 USD입니다.
곧 Cohere는 더 많은 모델 세부 정보를 보여주는 간단한 기술 보고서도 공개할 예정입니다.
블로그 주소: https://txt.cohere.com/command-r/
위 내용은 350억 개의 매개변수와 개방형 가중치를 갖춘 Transformer의 저자는 자신의 사업을 시작한 후 새로운 대형 모델을 출시했습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











DDREASE는 하드 드라이브, SSD, RAM 디스크, CD, DVD 및 USB 저장 장치와 같은 파일 또는 블록 장치에서 데이터를 복구하기 위한 도구입니다. 한 블록 장치에서 다른 블록 장치로 데이터를 복사하여 손상된 데이터 블록은 남겨두고 양호한 데이터 블록만 이동합니다. ddreasue는 복구 작업 중에 간섭이 필요하지 않으므로 완전히 자동화된 강력한 복구 도구입니다. 게다가 ddasue 맵 파일 덕분에 언제든지 중지하고 다시 시작할 수 있습니다. DDREASE의 다른 주요 기능은 다음과 같습니다. 복구된 데이터를 덮어쓰지 않지만 반복 복구 시 공백을 채웁니다. 그러나 도구에 명시적으로 지시된 경우에는 잘릴 수 있습니다. 여러 파일이나 블록의 데이터를 단일 파일로 복구

0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

지연이 발생하고 iPhone의 모바일 데이터 연결 속도가 느립니까? 일반적으로 휴대폰의 셀룰러 인터넷 강도는 지역, 셀룰러 네트워크 유형, 로밍 유형 등과 같은 여러 요소에 따라 달라집니다. 더 빠르고 안정적인 셀룰러 인터넷 연결을 얻기 위해 할 수 있는 일이 몇 가지 있습니다. 수정 1 – iPhone 강제 다시 시작 때로는 장치를 강제로 다시 시작하면 셀룰러 연결을 포함한 많은 항목이 재설정됩니다. 1단계 – 볼륨 높이기 키를 한 번 눌렀다가 놓습니다. 그런 다음 볼륨 작게 키를 눌렀다가 다시 놓습니다. 2단계 - 프로세스의 다음 부분은 오른쪽에 있는 버튼을 누르는 것입니다. iPhone이 다시 시작되도록 하세요. 셀룰러 데이터를 활성화하고 네트워크 속도를 확인하세요. 다시 확인하세요 수정 2 – 데이터 모드 변경 5G는 더 나은 네트워크 속도를 제공하지만 신호가 약할 때 더 잘 작동합니다

무엇? 주토피아는 국내 AI로 현실이 되는 걸까? 영상과 함께 노출된 것은 '켈링'이라는 국산 대형 영상세대 신형 모델이다. Sora는 유사한 기술 경로를 사용하고 자체 개발한 여러 기술 혁신을 결합하여 크고 합리적인 움직임뿐만 아니라 물리적 세계의 특성을 시뮬레이션하고 강력한 개념적 결합 능력과 상상력을 갖춘 비디오를 제작합니다. 데이터에 따르면 Keling은 최대 1080p의 해상도로 30fps에서 최대 2분의 초장 영상 생성을 지원하며 다양한 화면비를 지원합니다. 또 다른 중요한 점은 Keling이 실험실에서 공개한 데모나 비디오 결과 시연이 아니라 단편 비디오 분야의 선두주자인 Kuaishou가 출시한 제품 수준 애플리케이션이라는 점입니다. 더욱이 백지 작성이 아닌 실용성에 중점을 두고, 출시되자마자 온라인에 진출하는 데 중점을 두고 있다. 콰이잉에서는 커링의 대형 모델이 출시됐다.

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라
