Linux의 동기화 및 상호 배제 메커니즘
으아악
동기화
동기화 메커니즘은 여러 실행 스레드 또는 프로세스의 실행을 조정하여 특정 순서로 실행되거나 특정 조건에서 대기하도록 하는 프로세스입니다. 일반적인 동기화 메커니즘에는 세마포어, 조건 변수, 장벽 등이 포함됩니다.
디자인 원칙
-
원자적 연산: 원자적 연산은 분할할 수 없는 연산을 의미하며 모두 실행되거나 전혀 실행되지 않습니다. 동기화에서 원자적 작업은 스레드나 프로세스의 안전한 실행을 보장하는 필수 요소입니다.
-
상호 배제: 동기화의 주요 목표는 공유 리소스에 대한 상호 배타적 액세스를 보장하는 것입니다. 즉, 경쟁 조건을 피하기 위해 하나의 스레드 또는 프로세스만 동시에 공유 리소스에 액세스할 수 있습니다.
-
조건 대기: 동기화 메커니즘은 일반적으로 조건부 대기를 지원해야 합니다. 즉, 스레드나 프로세스는 특정 조건이 충족될 때까지 기다리고, 다른 스레드나 프로세스는 조건이 충족될 때 실행을 계속하도록 대기 스레드에 알립니다. 사이의 스레드 구현 조정.
-
순서 보존: 동기화에는 스레드 또는 프로세스가 예상 순서대로 실행되도록 실행 순서 제어가 포함될 수도 있으며 이를 통해 프로그램의 정확성과 신뢰성이 보장됩니다.
Linux에서 구현
-
세마포: 세마포를 통해 제한된 수의 스레드 또는 프로세스만 동시에 공유 리소스에 액세스할 수 있도록 리소스를 계산할 수 있습니다. Linux에서는 일반적으로
sem_init
、sem_wait
和sem_post
와 같은 함수를 사용하여 세마포어를 작동합니다. -
조건 변수: 조건 변수를 사용하면 스레드가 특정 조건이 충족될 때까지 대기하고 조건이 충족되면 실행을 계속하라는 알림을 받을 수 있습니다. Linux에서 조건 변수는 일반적으로
pthread_cond_init
、pthread_cond_wait
和pthread_cond_signal
와 같은 함수를 사용하여 조작됩니다.
뮤텍스
상호 배제는 공유 리소스에 대한 상호 배타적 액세스를 보장하는 데 사용되는 메커니즘입니다. 다중 스레드 또는 다중 프로세스 환경에서 뮤텍스 잠금은 가장 일반적인 상호 배제 메커니즘입니다.
디자인 원칙
- 뮤텍스 잠금: 뮤텍스 잠금은 동시에 하나의 스레드만 공유 리소스에 액세스할 수 있도록 하는 데 사용되는 잠금입니다. 한 스레드가 뮤텍스 잠금을 획득하면 다른 스레드는 기다려야 합니다.
- Critical 섹션: 중요한 섹션은 공유 리소스에 액세스할 수 있는 코드 섹션이며 동시에 하나의 스레드만 들어갈 수 있습니다. 중요한 섹션을 보호하기 위해 뮤텍스 잠금이 자주 사용됩니다.
- 교착 상태 회피: 뮤텍스 메커니즘을 설계할 때 뮤텍스 잠금 사용으로 인해 시스템이 완화되지 않은 대기 상태에 빠지지 않도록 교착 상태 회피를 고려해야 합니다.
Linux에서 구현
-
Mutex: Linux에서 mutex 잠금은 일반적으로
pthread_mutex_init
、pthread_mutex_lock
和pthread_mutex_unlock
와 같은 기능을 통해 작동됩니다. 이를 통해 스레드가 중요한 섹션에 안전하게 들어가고 나갈 수 있습니다. -
스핀락: 스핀락은 CPU를 포기하지 않고 뮤텍스를 기다리는 동안 루프를 계속 확인하는 잠금입니다. Linux에서 스핀록은 일반적으로
spin_lock
和spin_unlock
를 통해 작동됩니다.
위는 Linux에서 동기화 및 상호 배제를 달성하기 위한 몇 가지 일반적인 메커니즘입니다. 구체적인 선택은 애플리케이션의 요구 사항과 성능과 유지 관리 가능성 간의 균형에 따라 달라집니다.
아래 샘플 코드에서는 뮤텍스와 조건 변수를 사용하여 간단한 동기화 메커니즘을 구현하는 방법을 보여 드리겠습니다. POSIX 스레드 라이브러리의 관련 기능이 여기에서 사용됩니다.
#include #include #include #define BUFFER_SIZE 5 int buffer[BUFFER_SIZE]; int count = 0; pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; pthread_cond_t cond_producer = PTHREAD_COND_INITIALIZER; pthread_cond_t cond_consumer = PTHREAD_COND_INITIALIZER; void *producer(void *arg) { for (int i = 0; i while (count == BUFFER_SIZE) { // 缓冲区满,等待消费者消费 pthread_cond_wait(&cond_producer, &mutex); } buffer[count++] = i; printf("Produced: %d\n", i); // 通知消费者可以消费了 pthread_cond_signal(&cond_consumer); pthread_mutex_unlock(&mutex); } pthread_exit(NULL); } void *consumer(void *arg) { for (int i = 0; i while (count == 0) { // 缓冲区空,等待生产者生产 pthread_cond_wait(&cond_consumer, &mutex); } int item = buffer[--count]; printf("Consumed: %d\n", item); // 通知生产者可以生产了 pthread_cond_signal(&cond_producer); pthread_mutex_unlock(&mutex); } pthread_exit(NULL); } int main() { pthread_t producer_thread, consumer_thread; // 创建生产者和消费者线程 pthread_create(&producer_thread, NULL, producer, NULL); pthread_create(&consumer_thread, NULL, consumer, NULL); // 等待线程结束 pthread_join(producer_thread, NULL); pthread_join(consumer_thread, NULL); // 销毁互斥锁和条件变量 pthread_mutex_destroy(&mutex); pthread_cond_destroy(&cond_producer); pthread_cond_destroy(&cond_consumer); return 0; }
这个简单的示例演示了一个生产者-消费者问题,其中生产者线程负责往缓冲区中生产数据,而消费者线程负责从缓冲区中消费数据。互斥锁 mutex
用于确保对共享资源的互斥访问,而条件变量 cond_producer
和 cond_consumer
用于在缓冲区满或空时进行等待和通知。
请注意,实际应用中的同步和互斥可能更加复杂,具体的设计取决于应用的需求。
下面是一个简单的示例代码,演示了如何使用 Linux 中的 pthread_mutex_t
来实现互斥锁。这个示例中,两个线程共享一个计数器,通过互斥锁确保对计数器的互斥访问。
#include #include // 共享的计数器 int counter = 0; // 互斥锁 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; // 线程函数,增加计数器的值 void* increment_counter(void* arg) { for (int i = 0; i main() { // 创建两个线程 pthread_t thread1, thread2; pthread_create(&thread1, NULL, increment_counter, NULL); pthread_create(&thread2, NULL, increment_counter, NULL); // 等待线程结束 pthread_join(thread1, NULL); pthread_join(thread2, NULL); // 销毁互斥锁 pthread_mutex_destroy(&mutex); // 输出最终的计数器值 printf("Final Counter Value: %d\n", counter); return 0; }
在这个例子中,两个线程并发地增加 counter
变量的值。由于两个线程共享同一个变量,存在竞争条件。互斥锁 mutex
用来确保对 counter
的互斥访问,一个线程在访问 counter
时先上锁,完成后再解锁,这样另一个线程才能进入。
要使用互斥锁,需要注意以下几点:
-
뮤텍스 초기화:
PTHREAD_MUTEX_INITIALIZER
或者pthread_mutex_init
를 사용하여 뮤텍스를 초기화합니다. -
잠금 및 잠금 해제:
pthread_mutex_lock
来上锁,使用pthread_mutex_unlock
를 사용하여 잠금을 해제하세요. 중요 섹션 내의 공유 리소스에 대한 액세스는 잠금과 잠금 해제 사이에 있어야 합니다. -
뮤텍스 삭제: 더 이상 필요하지 않은 뮤텍스를 삭제하려면
pthread_mutex_destroy
를 사용하세요.
위 코드는 공유 리소스에 대한 안전한 액세스를 보장하고 경합 상태를 방지하기 위해 뮤텍스 잠금을 사용하는 방법을 보여줍니다.
위 내용은 Linux의 동기화 및 상호 배제 메커니즘의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Centos와 Ubuntu의 주요 차이점은 다음과 같습니다. Origin (Centos는 Red Hat, Enterprise의 경우, Ubuntu는 Debian에서 시작하여 개인의 경우), 패키지 관리 (Centos는 안정성에 중점을 둡니다. Ubuntu는 APT를 사용하여 APT를 사용합니다), 지원주기 (Ubuntu는 5 년 동안 LTS 지원을 제공합니다), 커뮤니티에 중점을 둔다 (Centos Conciors on ubuntu). 튜토리얼 및 문서), 사용 (Centos는 서버에 편향되어 있으며 Ubuntu는 서버 및 데스크탑에 적합), 다른 차이점에는 설치 단순성 (Centos는 얇음)이 포함됩니다.

Centos는 2024 년에 상류 분포 인 RHEL 8이 종료 되었기 때문에 폐쇄 될 것입니다. 이 종료는 CentOS 8 시스템에 영향을 미쳐 업데이트를 계속받지 못하게합니다. 사용자는 마이그레이션을 계획해야하며 시스템을 안전하고 안정적으로 유지하기 위해 Centos Stream, Almalinux 및 Rocky Linux가 포함됩니다.

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

CentOS 설치 단계 : ISO 이미지를 다운로드하고 부팅 가능한 미디어를 실행하십시오. 부팅하고 설치 소스를 선택하십시오. 언어 및 키보드 레이아웃을 선택하십시오. 네트워크 구성; 하드 디스크를 분할; 시스템 시계를 설정하십시오. 루트 사용자를 만듭니다. 소프트웨어 패키지를 선택하십시오. 설치를 시작하십시오. 설치가 완료된 후 하드 디스크에서 다시 시작하고 부팅하십시오.

Docker Desktop을 사용하는 방법? Docker Desktop은 로컬 머신에서 Docker 컨테이너를 실행하는 도구입니다. 사용 단계는 다음과 같습니다. 1. Docker Desktop 설치; 2. Docker Desktop을 시작하십시오. 3. Docker 이미지를 만듭니다 (Dockerfile 사용); 4. Docker Image 빌드 (Docker 빌드 사용); 5. 도커 컨테이너를 실행하십시오 (Docker Run 사용).

CentOS 시스템 하에서 Gitlab의 백업 및 복구 정책 데이터 보안 및 복구 가능성을 보장하기 위해 CentOS의 Gitlab은 다양한 백업 방법을 제공합니다. 이 기사는 완전한 GITLAB 백업 및 복구 전략을 설정하는 데 도움이되는 몇 가지 일반적인 백업 방법, 구성 매개 변수 및 복구 프로세스를 자세히 소개합니다. 1. 수동 백업 gitlab-rakegitlab : 백업 : 명령을 작성하여 수동 백업을 실행하십시오. 이 명령은 gitlab 저장소, 데이터베이스, 사용자, 사용자 그룹, 키 및 권한과 같은 주요 정보를 백업합니다. 기본 백업 파일은/var/opt/gitlab/backups 디렉토리에 저장됩니다. /etc /gitlab을 수정할 수 있습니다

Centos Hard Disk Mount는 다음 단계로 나뉩니다. 하드 디스크 장치 이름 (/dev/sdx)을 결정하십시오. 마운트 포인트를 만듭니다 ( /mnt /newdisk를 사용하는 것이 좋습니다); 마운트 명령을 실행합니다 (mount /dev /sdx1 /mnt /newdisk); 영구 마운트 구성을 추가하려면 /etc /fstab 파일을 편집하십시오. Umount 명령을 사용하여 장치를 제거하여 프로세스가 장치를 사용하지 않도록하십시오.

Centos가 중단 된 후 사용자는 다음과 같은 조치를 취할 수 있습니다. Almalinux, Rocky Linux 및 Centos 스트림과 같은 호환되는 분포를 선택하십시오. Red Hat Enterprise Linux, Oracle Linux와 같은 상업 분포로 마이그레이션합니다. Centos 9 Stream : 롤링 분포로 업그레이드하여 최신 기술을 제공합니다. Ubuntu, Debian과 같은 다른 Linux 배포판을 선택하십시오. 컨테이너, 가상 머신 또는 클라우드 플랫폼과 같은 다른 옵션을 평가하십시오.
