기계 학습: Github의 상위 19개 강화 학습(RL) 프로젝트
강화 학습(RL)은 에이전트가 시행착오를 통해 학습하는 기계 학습 방법입니다. 강화학습 알고리즘은 게임, 로봇공학, 금융 등 다양한 분야에서 사용됩니다.
RL의 목표는 예상되는 장기 수익을 극대화하는 전략을 찾는 것입니다. 강화 학습 알고리즘은 일반적으로 모델 기반과 모델 없는 두 가지 범주로 나뉩니다. 모델 기반 알고리즘은 환경 모델을 사용하여 최적의 행동 경로를 계획합니다. 이 접근 방식은 환경의 정확한 모델링과 모델을 사용하여 다양한 작업의 결과를 예측하는 데 의존합니다. 대조적으로, 모델 없는 알고리즘은 환경을 명시적으로 모델링하지 않고 환경과의 상호 작용을 통해 직접 학습합니다. 이 방법은 환경 모델을 얻기 어렵거나 부정확한 상황에 더 적합합니다. 반면, 실제로 모델이 없는 강화학습 알고리즘은 환경에 대한 명시적인 모델링이 필요하지 않고 지속적인 경험을 통해 학습합니다. Q-learning 및 SARSA와 같은 인기 있는 RL 알고리즘은 이 아이디어를 기반으로 설계되었습니다.
강화학습이 왜 중요한가요?
15. 데모를 통한 심층 강화 학습: 인간의 데모 또는 보상이 있는 상태에서 에이전트를 훈련하기 위한 툴킷입니다.
프로젝트 소스 코드 URL: https://ieeexplore.ieee.org/document/9705112
16 TensorFlow 에이전트: TensorFlow를 사용하여 강화 학습 에이전트를 훈련하기 위한 라이브러리입니다.
프로젝트 소스 코드 URL: https://www.tensorflow.org/agents
17. PyGame 학습 환경: 클래식 아케이드 게임 프레임워크에서 AI 에이전트를 개발하고 평가하기 위한 툴킷입니다.
프로젝트 소스 코드 URL: https://github.com/ntasfi/PyGame-Learning-Environment
18. Malmo: 개발자가 Minecraft를 인공 지능 연구 플랫폼으로 사용할 수 있는 오픈 소스 프로젝트입니다.
프로젝트 소스 코드 URL: https://github.com/microsoft/malmo
19. AirSim: 시뮬레이션 환경에서 자율 차량을 개발, 평가 및 테스트하기 위한 툴킷입니다.
프로젝트 소스 코드 URL: https://microsoft.github.io/AirSim/
RL 개발을 직접 시작하려면 어떻게 해야 하나요?
자신만의 RL 애플리케이션 개발에 관심이 있다면 가장 좋은 시작점은 소프트웨어 개발 키트(SDK)를 다운로드하는 것입니다. SDK는 RL 애플리케이션을 개발하는 데 필요한 모든 도구와 라이브러리를 제공합니다.
SDK가 있으면 다양한 프로그래밍 언어와 프레임워크 중에서 선택할 수 있습니다. 예를 들어 Unity 엔진 개발에 관심이 있다면 Unity SDK를 사용할 수 있습니다.
Unreal Engine 개발에 관심이 있다면 Unreal Engine 4 SDK를 사용할 수 있습니다. 플랫폼과 언어를 선택하면 RL 애플리케이션 생성을 시작할 수 있습니다. 또한 RL 개발을 시작하는 데 도움이 되는 튜토리얼과 강좌를 온라인에서 찾을 수 있습니다.
마지막으로, RL 애플리케이션을 개발하려면 연습과 인내가 필요하다는 점을 기억하는 것이 중요합니다. 하지만 충분한 헌신과 노력을 통해 해당 분야의 전문가가 될 수 있습니다.
또한 강화 학습에 대해 자세히 알아보기 위한 리소스를 찾고 있다면 온라인에서 수많은 튜토리얼과 강좌를 찾을 수 있습니다.
또한 강화 학습 알고리즘 및 기술의 최신 발전을 논의하는 많은 책과 연구 논문이 있습니다. 또한 컨퍼런스나 워크숍에 참석하는 것은 강화 학습을 접할 수 있는 좋은 방법입니다.
결론
강화 학습은 다양한 산업 분야에 걸쳐 적용할 수 있는 흥미롭고 빠르게 성장하는 분야입니다. 이를 통해 우리는 환경에서 학습하고 데이터를 기반으로 결정을 내릴 수 있는 지능형 에이전트를 개발할 수 있습니다.
RL 개발을 시작하려면 SDK를 다운로드하고 프로젝트에 가장 적합한 언어와 프레임워크를 선택해야 합니다.
또한 RL의 기본을 이해하고 에이전트 개발을 연습하는 시간이 필요합니다. 마지막으로, RL에 대해 더 자세히 배우는 데 도움이 되는 많은 리소스가 온라인에 있습니다. 충분한 헌신과 노력을 통해 귀하는 해당 분야의 전문가가 될 수 있습니다.
위 내용은 기계 학습: Github의 상위 19개 강화 학습(RL) 프로젝트의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

1일 본 사이트 소식에 따르면 SK하이닉스는 오늘(1일) 블로그 게시물을 통해 8월 6일부터 8일까지 미국 캘리포니아주 산타클라라에서 열리는 글로벌 반도체 메모리 서밋 FMS2024에 참가한다고 밝혔다. 많은 새로운 세대의 제품. 인공지능 기술에 대한 관심이 높아지고 있는 가운데, 이전에는 주로 NAND 공급업체를 대상으로 한 플래시 메모리 서밋(FlashMemorySummit)이었던 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage) 소개를 올해는 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage)으로 명칭을 변경했습니다. DRAM 및 스토리지 공급업체와 더 많은 플레이어를 초대하세요. SK하이닉스가 지난해 출시한 신제품

7월 5일 이 웹사이트의 소식에 따르면 글로벌파운드리는 올해 7월 1일 보도자료를 통해 타고르 테크놀로지(Tagore Technology)의 전력질화갈륨(GaN) 기술 및 지적재산권 포트폴리오 인수를 발표하고 자동차와 인터넷 시장 점유율 확대를 희망하고 있다고 밝혔다. 더 높은 효율성과 더 나은 성능을 탐구하기 위한 사물 및 인공 지능 데이터 센터 응용 분야입니다. 생성 AI와 같은 기술이 디지털 세계에서 계속 발전함에 따라 질화갈륨(GaN)은 특히 데이터 센터에서 지속 가능하고 효율적인 전력 관리를 위한 핵심 솔루션이 되었습니다. 이 웹사이트는 이번 인수 기간 동안 Tagore Technology의 엔지니어링 팀이 GLOBALFOUNDRIES에 합류하여 질화갈륨 기술을 더욱 개발할 것이라는 공식 발표를 인용했습니다. G
