목차
소개
1. 데이터 분류 및 등급화의 중요성
2. 기계 학습과 데이터 분류 및 등급 지정
1. 지도 학습
2. 비지도 학습
3. 준지도 학습
4. 비즈니스 시나리오와 AI 훈련 방법의 매칭
5. AI와 인간의 협력
3. 결론
기술 주변기기 일체 포함 AI 지원 데이터 분류 및 분류

AI 지원 데이터 분류 및 분류

Apr 08, 2024 pm 07:55 PM
일체 포함 데이터 보안

소개

AI 지원 데이터 분류 및 분류

정보 폭발 시대에 데이터는 기업의 가장 귀중한 자산 중 하나가 되었습니다. 그러나 많은 양의 데이터를 효과적으로 분류하고 분류하지 못하면 그 데이터는 무질서하고 혼란스러워지며, 데이터 보안을 효과적으로 보장할 수 없고 진정한 데이터 가치를 발휘할 수 없습니다. 따라서 데이터 분류 및 등급 지정은 데이터 보안과 데이터 가치 모두에 중요해졌습니다. 이 기사에서는 데이터 분류 및 분류의 중요성에 대해 논의하고 기계 학습을 사용하여 데이터의 지능적인 분류 및 분류를 달성하는 방법을 소개합니다.

1. 데이터 분류 및 등급화의 중요성

데이터 분류 및 등급화는 특정 규칙과 기준에 따라 데이터를 분류하고 분류하는 과정입니다. 이는 기업이 데이터를 더 잘 관리하고 데이터 기밀성, 가용성, 무결성 및 접근성을 향상시켜 비즈니스 의사 결정 및 개발을 더 잘 지원할 수 있도록 돕습니다. 데이터 분류 및 등급 지정의 중요성은 다음과 같습니다. 1. 기밀성: 데이터를 분류하고 등급을 매김으로써 데이터 보안을 보장하기 위해 다양한 민감도 수준에 따라 데이터를 암호화하고 권한을 제어할 수 있습니다. 2. 가용성: 데이터 분류 및 등급화를 통해 데이터의 중요성과 긴급성을 더 잘 이해할 수 있으며, 이를 통해 합리적으로 자원을 할당하고 데이터의 적시 가용성을 보장하기 위한 백업 전략을 수립할 수 있습니다. 3. 무결성: 데이터 분류 및 등급화를 통해 데이터를 효과적으로 검증하고 검증하여 데이터의

데이터 활용도 향상 : 데이터를 분류하고 등급화함으로써 데이터의 속성과 특성을 보다 정확하게 이해할 수 있습니다. 분석 및 마이닝을 위해 데이터를 더 잘 활용하고 데이터의 가치와 활용도를 향상시키기 위해 특성을 개선합니다.

데이터 관리 비용 절감: 데이터의 양이 방대하고 무질서할 경우 데이터 관리 및 유지 비용이 높아지는 경우가 많습니다. 데이터를 분류하고 등급화함으로써 데이터를 질서 있게 관리할 수 있어 불필요한 업무 중복을 줄이고 데이터 관리 비용을 절감할 수 있습니다.

데이터 보안 보호 강화: 데이터 분류 및 분류는 승인되지 않은 사람의 액세스 또는 유출을 방지하기 위해 데이터의 민감도에 따라 다양한 수준의 표적 보호를 제공할 수 있습니다.

데이터 공유 및 협력: 분류 및 등급을 기반으로 해당 권한 관리 메커니즘을 공식화하고 다양한 범주 및 수준에 따라 데이터를 승인하고 공유 및 협력을 충족하며 정보 커뮤니케이션을 강화합니다.

비즈니스 의사결정 지원: 데이터는 비즈니스 의사결정을 지원하는 중요한 기반입니다. 데이터를 분류하고 등급을 매김으로써 데이터의 의미와 관련성을 더 잘 이해할 수 있으며 비즈니스 결정에 대한 보다 안정적인 지원과 참조를 제공할 수 있습니다.

2. 기계 학습과 데이터 분류 및 등급 지정

1. 지도 학습

지도 학습은 알려진 입력과 출력을 사용하여 모델을 훈련하는 기계 학습 방법입니다. 데이터 분류 및 등급 지정에서 지도 학습은 레이블이 지정된 데이터 샘플을 통해 모델을 훈련하고 지능적인 분류 및 등급을 달성할 수 있습니다. 지도 학습은 레이블이 지정된 데이터 샘플을 사용하여 모델을 훈련하고 데이터 분류 및 분류에 적용될 수 있는 지능적인 분류 및 분류를 달성합니다.

텍스트 분류: 텍스트 데이터 처리에서 지도 학습은 레이블이 지정된 텍스트 데이터 샘플을 통해 모델을 훈련하여 감정 분석, 주제 인식 등과 같은 텍스트 자동 분류를 달성할 수 있습니다.

이미지 인식: 이미지 데이터 처리에서 지도 학습은 레이블이 지정된 이미지 데이터 샘플을 통해 모델을 훈련하여 객체 인식, 얼굴 인식 등과 같은 이미지의 자동 분류를 달성할 수 있습니다.

오디오 인식: 오디오 데이터 처리에서 지도 학습은 레이블이 지정된 오디오 데이터 샘플을 통해 모델을 훈련하여 음성 인식, 음악 분류 등과 같은 오디오 자동 분류를 달성할 수 있습니다.

2. 비지도 학습

비지도 학습은 훈련을 위해 레이블이 지정된 데이터에 의존하지 않는 기계 학습 방법입니다. 데이터 분류 및 등급화에 있어서 비지도 학습은 데이터 자체의 특성과 구조를 기반으로 분류하고 분류함으로써 지능적인 분류 및 등급화를 달성할 수 있습니다. 다음은 데이터 분류 및 분류에 비지도 학습을 적용한 것입니다.

클러스터 분석: 클러스터 분석에서 비지도 학습은 데이터 샘플을 여러 카테고리로 나눌 수 있으며 사용자 그룹화, 제품 등 데이터의 자동 분류를 실현합니다. 분류 등

연관 규칙 마이닝: 연관 규칙 마이닝에서 비지도 학습은 데이터 샘플 간의 연관성을 발견하여 데이터를 분류하고 분류할 수 있으며 장바구니 분석, 추천 시스템 등과 같은 데이터의 자동 분류를 달성할 수 있습니다.

이상 탐지: 이상 탐지에서 비지도 학습은 데이터 샘플 간의 비정상적인 동작을 발견하여 데이터를 분류하고 분류하여 네트워크 보안 모니터링, 사기 탐지 등 데이터의 자동 분류를 달성할 수 있습니다.

3. 준지도 학습

준지도 학습은 지도 학습과 비지도 학습을 결합한 기계 학습 방법입니다. 데이터 분류 및 등급 지정에서 준지도 학습은 적은 수의 레이블이 지정된 데이터 샘플과 많은 수의 레이블이 없는 데이터 샘플을 사용하여 모델을 학습할 수 있으므로 지능적인 분류 및 등급 지정이 가능합니다. 다음은 데이터 분류 및 분류에 준지도 학습을 적용한 것입니다.

준지도 텍스트 분류: 텍스트 데이터 처리에서 준지도 학습은 소수의 레이블이 지정된 텍스트 데이터 샘플을 사용할 수 있으며 레이블이 지정되지 않은 대량의 텍스트 데이터 모델을 훈련하고 텍스트를 자동으로 분류하기 위해 텍스트 데이터 샘플에 레이블을 지정합니다.

준지도 이미지 분류: 이미지 데이터 처리에서 준지도 학습은 소수의 레이블이 지정된 이미지 데이터 샘플과 다수의 레이블이 지정되지 않은 이미지 데이터 샘플을 통해 모델을 훈련하여 다음과 같은 자동 분류를 달성할 수 있습니다. 이미지.

준지도 이상 탐지: 이상 탐지에서 준지도 학습은 소수의 레이블이 있는 정상 데이터 샘플과 다수의 레이블이 없는 데이터 샘플을 통해 모델을 훈련하여 비정상 데이터를 자동으로 분류할 수 있습니다. .

4. 비즈니스 시나리오와 AI 훈련 방법의 매칭

실제 적용에서는 비즈니스 시나리오에 맞는 적절한 AI 훈련 방법을 선택하는 것이 중요합니다. 다음은 AI 교육 방법과 비즈니스 시나리오를 일치시키기 위한 몇 가지 제안 사항입니다.

이미 많은 양의 레이블이 지정된 데이터가 있는 비즈니스 시나리오의 경우 교육용 지도 학습 방법을 선택하여 효율적인 데이터 분류 및 분류를 달성할 수 있습니다.

레이블이 있는 데이터는 부족하지만 레이블이 지정되지 않은 데이터가 많은 비즈니스 시나리오의 경우 훈련을 위해 비지도 학습 방법을 선택하고 데이터 자체의 특성과 구조를 기반으로 분류하고 분류할 수 있습니다.

소량의 레이블이 지정된 데이터와 대량의 레이블이 없는 데이터가 모두 있는 비즈니스 시나리오의 경우 훈련을 위한 준지도 학습 방법을 선택하여 레이블이 있는 데이터와 레이블이 없는 데이터를 최대한 활용하여 지능적인 분류 및 분류를 달성할 수 있습니다. .

특정 비즈니스 분야의 데이터 분류 및 등급 요구에 따라 자연어 처리 분야의 텍스트 분류 모델, 컴퓨터 비전 분야의 이미지 분류 모델 등 학습을 위한 타겟 AI 학습 방법을 선택할 수 있습니다.

5. AI와 인간의 협력

AI는 데이터 분류 및 등급 지정에서 중요한 역할을 하지만 분류 및 등급 지정에서 AI가 인간을 완전히 대체할 수는 없습니다. 어떤 상황에서는 인간의 전문성과 경험이 대체 불가능한 상태로 남아 있습니다. 따라서 효율적인 데이터 분류 및 분류를 위해서는 AI와 인간 간의 협력이 중요합니다. 다음은 데이터 분류 및 등급 지정에서 AI와 인간이 협력하는 몇 가지 방법입니다.

인간 전문가가 데이터 라벨링에 참여합니다. 지도 학습에서 인간 전문가가 라벨링 데이터에 참여하여 고품질 라벨링 샘플을 제공할 수 있습니다. , 이로써 모델의 훈련 효과가 향상됩니다.

수동 검토 및 조정 결과: AI 모델이 분류 및 등급화되면 인간이 결과를 검토 및 조정할 수 있고 모델에서 발생할 수 있는 오류를 수정하며 분류 및 등급화의 정확성을 높일 수 있습니다.

모델의 지속적인 최적화: 비즈니스 요구 사항과 데이터 특성이 변화함에 따라 AI 모델은 지속적으로 최적화되고 업데이트되어야 합니다. 인간은 비즈니스 시나리오에 더 잘 적응하기 위해 실제 조건을 기반으로 모델을 조정하고 최적화할 수 있습니다.

3. 결론

데이터 분류 및 등급 지정은 데이터 관리 및 분석의 중요한 부분이며 기업 발전에 큰 의미가 있습니다. 비즈니스 시나리오에 맞는 적절한 AI 훈련 방법을 선택하고 이를 인간의 전문 지식 및 경험과 결합함으로써 지능적인 데이터 분류 및 분류를 달성하고 데이터 보안, 활용 및 관리 효율성을 향상시켜 강력한 지원을 제공합니다. 기업의 발전.

위 내용은 AI 지원 데이터 분류 및 분류의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Jun 10, 2024 am 11:08 AM

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 Jun 07, 2024 am 10:06 AM

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

AI와 같은 시장을 개척하는 GlobalFoundries는 Tagore Technology의 질화 갈륨 기술 및 관련 팀을 인수합니다. AI와 같은 시장을 개척하는 GlobalFoundries는 Tagore Technology의 질화 갈륨 기술 및 관련 팀을 인수합니다. Jul 15, 2024 pm 12:21 PM

7월 5일 이 웹사이트의 소식에 따르면 글로벌파운드리는 올해 7월 1일 보도자료를 통해 타고르 테크놀로지(Tagore Technology)의 전력질화갈륨(GaN) 기술 및 지적재산권 포트폴리오 인수를 발표하고 자동차와 인터넷 시장 점유율 확대를 희망하고 있다고 밝혔다. 더 높은 효율성과 더 나은 성능을 탐구하기 위한 사물 및 인공 지능 데이터 센터 응용 분야입니다. 생성 AI와 같은 기술이 디지털 세계에서 계속 발전함에 따라 질화갈륨(GaN)은 특히 데이터 센터에서 지속 가능하고 효율적인 전력 관리를 위한 핵심 솔루션이 되었습니다. 이 웹사이트는 이번 인수 기간 동안 Tagore Technology의 엔지니어링 팀이 GLOBALFOUNDRIES에 합류하여 질화갈륨 기술을 더욱 개발할 것이라는 공식 발표를 인용했습니다. G

See all articles