하나의 기사로 토큰화를 이해해보세요!
언어 모델은 일반적으로 문자열 형식인 텍스트에 대해 추론하지만 모델에 대한 입력은 숫자만 가능하므로 텍스트를 숫자 형식으로 변환해야 합니다.
토큰화는 자연어 처리의 기본 작업입니다. 연속된 텍스트 시퀀스(예: 문장, 단락 등)를 특정 내용에 따라 문자 시퀀스(예: 단어, 구, 문자, 구두점 등)로 나눌 수 있습니다. 그 중 단위를 토큰(token) 또는 워드(word)라고 합니다.
아래 그림에 표시된 특정 프로세스에 따라 먼저 텍스트 문장을 단위로 나눈 다음 단일 요소를 디지털화(벡터로 매핑)한 다음 이러한 벡터를 인코딩 모델에 입력하고 마지막으로 다운스트림 작업에 출력합니다. 최종 결과를 더 얻으려면.
텍스트 세분화
텍스트 세분화에 따라 토큰화는 단어 세분화 토큰화, 문자 세분화 토큰화, 하위 단어 세분화 토큰화의 세 가지 범주로 나눌 수 있습니다.
1. 단어 세분성 토큰화
단어 세분성 토큰화는 가장 직관적인 단어 분할 방법으로, 단어에 따라 텍스트를 분할하는 것을 의미합니다. 예:
The quick brown fox jumps over the lazy dog.词粒度Tokenized结果:['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog', '.']
이 예에서는 텍스트가 독립된 단어로 구분되고 각 단어가 토큰으로 사용되며 구두점 '.'도 독립된 토큰으로 간주됩니다.
중국어 텍스트는 일반적으로 단어 분할 알고리즘을 통해 식별된 사전이나 구문, 관용어, 고유 명사 등에서 수집된 표준 어휘 모음을 기반으로 분할됩니다.
我喜欢吃苹果。词粒度Tokenized结果:['我', '喜欢', '吃', '苹果', '。']
이 중국어 텍스트는 "I", "like", "eat", "apple" 및 마침표 "."의 다섯 단어로 구분되며 각 단어는 토큰 역할을 합니다.
2. 문자 세분화 토큰화
문자 세분화 토큰화는 텍스트를 가장 작은 문자 단위로 나눕니다. 즉, 각 문자는 별도의 토큰으로 처리됩니다. 예:
Hello, world!字符粒度Tokenized结果:['H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd', '!']
문자 세분성 중국어의 토큰화는 각각의 독립적인 한자에 따라 텍스트를 분할하는 것입니다.
我喜欢吃苹果。字符粒度Tokenized结果:['我', '喜', '欢', '吃', '苹', '果', '。']
3.subword granular Tokenization
subword granular 토큰화는 단어 세분성과 문자 세분성 사이에서 텍스트를 단어와 문자 사이의 하위 단어(하위 단어)로 토큰으로 나눕니다. 일반적인 하위 단어 토큰화 방법에는 BPE(바이트 쌍 인코딩), WordPiece 등이 포함됩니다. 이러한 방법은 텍스트 데이터의 하위 문자열 빈도를 계산하여 단어 분할 사전을 자동으로 생성합니다. 이는 특정 의미 무결성을 유지하면서 서비스 불가능한 단어(OOV) 문제를 효과적으로 처리할 수 있습니다.
helloworld
BPE 알고리즘으로 훈련한 후 생성된 하위 단어 사전에 다음 항목이 포함되어 있다고 가정합니다.
h, e, l, o, w, r, d, hel, low, wor, orld
하위 단어 세분성 토큰화된 결과:
['hel', 'low', 'orld']
여기서 "helloworld"는 세 개의 하위 단어로 나뉩니다." " hel", "low", "orld"는 모두 사전에 나타나는 빈도가 높은 하위 문자열 조합입니다. 이 분할 방법은 알려지지 않은 단어(예: "helloworld"는 표준 영어 단어가 아님)를 처리할 수 있을 뿐만 아니라 특정 의미 정보(하위 단어의 조합으로 원래 단어를 복원할 수 있음)도 유지할 수 있습니다.
중국어의 경우 하위 단어 세분화 토큰화는 텍스트를 한자 사이의 하위 단어와 토큰으로 단어로 나누기도 합니다. 예:
我喜欢吃苹果
BPE 알고리즘으로 교육한 후 생성된 하위 단어 사전에 다음 항목이 포함되어 있다고 가정합니다.
我, 喜, 欢, 吃, 苹, 果, 我喜欢, 吃苹果
하위 단어 세분성 토큰화된 결과:
['我', '喜欢', '吃', '苹果']
이 예에서는 "I like to eat" 사과'는 '나', '좋아요', '먹다', '사과' 등 4개의 하위 단어로 나뉘며, 이 하위 단어는 모두 사전에 등재된다. 한자는 더 이상 영어 하위 단어처럼 결합하지 않지만, 하위 단어 토큰화 방식은 사전 생성 시 "좋아요", "사과 먹기" 등 빈도가 높은 단어 조합을 고려했습니다. 이 분할 방법은 알려지지 않은 단어를 처리하는 동안 단어 수준의 의미 정보를 유지합니다.
Indexing
코퍼스나 어휘가 다음과 같이 생성되었다고 가정합니다.
vocabulary = {'我': 0,'喜欢': 1,'吃': 2,'苹果': 3,'。': 4}
어휘의 순서에 있는 각 토큰의 인덱스를 찾을 수 있습니다.
indexed_tokens = [vocabulary[token] for token in token_sequence]print(indexed_tokens)
출력: [0, 1, 2, 3, 4].
위 내용은 하나의 기사로 토큰화를 이해해보세요!의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Alter Table 문을 사용하여 SQL의 기존 테이블에 새 열을 추가하십시오. 특정 단계에는 다음이 포함됩니다. 테이블 이름 및 열 정보 결정, Alter Table 문 작성 및 진술 실행. 예를 들어, 고객 테이블에 이메일 열을 추가하십시오 (Varchar (50)) : Alter Table 고객 이메일 추가 Varchar (50);

SQL에서 열을 추가하기위한 구문은 Alter Table_Name ADD CORMEN_NAME DATY_TYPE [NOT NULL] [DEFAULT DEFAULT_VALUE]; 여기서 table_name은 테이블 이름이고 column_name은 새 열 이름, data_type는 데이터 유형이며 NULL은 NULL 값이 허용되는지 여부를 지정하고 기본값 기본값을 지정합니다.

SQL 테이블 개선 성능을 개선하기위한 팁 : 삭제 대신 Truncate 테이블을 사용하고 공간을 확보하고 ID 열을 재설정하십시오. 계단식 삭제를 방지하기 위해 외국의 주요 제약 조건을 비활성화하십시오. 트랜잭션 캡슐화 작업을 사용하여 데이터 일관성을 보장합니다. 배치는 빅 데이터를 삭제하고 한계를 통해 행 수를 제한합니다. 쿼리 효율성을 향상시키기 위해 지우고 지수를 재구성하십시오.

새로 추가 된 열에 대한 기본값을 설정하고 Alter Table 문을 사용하십시오. 문 : 열 추가를 지정하고 기본값을 설정하십시오. Alter Table_Name Add Column_name Data_Type Default_value; 구속 조건 조항을 사용하여 기본값을 지정하십시오. ALTER TABLE TABLE_NAME CORMENT CORMEN_NAME DATA DATA DATA DATA DATA DATA DATA DATAY_TYPE 제한 DEFAULT_COSSTRANT DEFAULT DEFAULT_VALUE;

예, 삭제 명령문은 SQL 테이블을 지우는 데 사용될 수 있습니다. 단계는 다음과 같습니다. 삭제 명령문 사용 : table_name에서 삭제; TABLE_NAME을 제거 할 테이블 이름으로 바꾸십시오.

Redis 메모리 조각화는 할당 된 메모리에 재 할당 할 수없는 작은 자유 영역의 존재를 말합니다. 대처 전략에는 다음이 포함됩니다. REDIS를 다시 시작하십시오 : 메모리를 완전히 지우지 만 인터럽트 서비스. 데이터 구조 최적화 : Redis에 더 적합한 구조를 사용하여 메모리 할당 및 릴리스 수를 줄입니다. 구성 매개 변수 조정 : 정책을 사용하여 최근에 가장 적게 사용 된 키 값 쌍을 제거하십시오. 지속 메커니즘 사용 : 데이터를 정기적으로 백업하고 Redis를 다시 시작하여 조각을 정리하십시오. 메모리 사용 모니터링 : 적시에 문제를 발견하고 조치를 취하십시오.

phpmyadmin을 사용하여 데이터 테이블을 만들려면 다음 단계가 필수적입니다. 데이터베이스에 연결하고 새 탭을 클릭하십시오. 테이블의 이름을 지정하고 저장 엔진을 선택하십시오 (InnoDB 권장). 열 이름, 데이터 유형, NULL 값 허용 여부 및 기타 속성을 포함하여 열 추가 버튼을 클릭하여 열 디테일을 추가하십시오. 기본 키로 하나 이상의 열을 선택하십시오. 저장 버튼을 클릭하여 테이블과 열을 만듭니다.

Oracle 데이터베이스를 만드는 것은 쉽지 않으므로 기본 메커니즘을 이해해야합니다. 1. 데이터베이스 및 Oracle DBMS의 개념을 이해해야합니다. 2. SID, CDB (컨테이너 데이터베이스), PDB (Pluggable Database)와 같은 핵심 개념을 마스터합니다. 3. SQL*Plus를 사용하여 CDB를 생성 한 다음 PDB를 만들려면 크기, 데이터 파일 수 및 경로와 같은 매개 변수를 지정해야합니다. 4. 고급 응용 프로그램은 문자 세트, 메모리 및 기타 매개 변수를 조정하고 성능 튜닝을 수행해야합니다. 5. 디스크 공간, 권한 및 매개 변수 설정에주의를 기울이고 데이터베이스 성능을 지속적으로 모니터링하고 최적화하십시오. 그것을 능숙하게 마스터 함으로써만 지속적인 연습이 필요합니다. Oracle 데이터베이스의 생성 및 관리를 진정으로 이해할 수 있습니다.
