> 백엔드 개발 > C++ > C++ 함수 재귀에 대한 자세한 설명: 재귀의 복잡성 분석

C++ 함수 재귀에 대한 자세한 설명: 재귀의 복잡성 분석

王林
풀어 주다: 2024-05-04 15:54:02
원래의
541명이 탐색했습니다.

재귀는 함수가 자신을 호출하는 프로세스입니다. 재귀의 시간 복잡도는 재귀 호출 횟수를 세어 분석할 수 있습니다. 예를 들어 계승 함수는 O(n^2)이고, 피보나치 수열의 n번째 항의 재귀 함수는 O(ψ^n)입니다. 여기서 ψ는 황금 비율입니다.

C++ 函数递归详解:递归的复杂度分析

C++ 함수 재귀에 대한 자세한 설명: 재귀의 복잡성 분석

재귀란 무엇인가요?

재귀는 자신을 호출하는 함수의 동작입니다. 재귀는 함수가 자신 내에서 자신을 호출할 때 발생합니다.

재귀의 예

다음은 계승을 계산하는 재귀 함수입니다.

int factorial(int n) {
  if (n == 0) {
    return 1;
  }
  return n * factorial(n - 1);
}
로그인 후 복사

재귀의 복잡성 분석

재귀 함수의 복잡성은 재귀 호출 횟수를 세어 분석할 수 있습니다.

팩토리얼 함수의 경우:

  • n이 0이면 재귀적으로 한 번 호출합니다.
  • n이 1이면 재귀 호출이 2번 발생합니다(자체 호출 1회, 꼬리 호출 1회).
  • n이 2이면 재귀 호출이 3번 수행됩니다(자체 호출 1회, 꼬리 호출 2회).

비유적으로 n이 k일 때 재귀 호출 횟수는 k + 1입니다.

재귀 호출의 수는 1, 2, 3, ..., k + 1의 산술 수열을 형성하며 그 합산 공식은 다음과 같습니다.

1 + 2 + 3 + ... + (k + 1) = (k + 1) * (k + 2) / 2
로그인 후 복사

따라서 계승 함수의 복잡도는 O(n^2)입니다. .

실용 사례

다음은 피보나치 수열의 n번째 항을 계산하는 재귀 함수입니다.

int fibonacci(int n) {
  if (n <= 1) {
    return 1;
  }
  return fibonacci(n - 1) + fibonacci(n - 2);
}
로그인 후 복사

재귀 호출 횟수는 황금비와 관련이 있으며 복잡도는 O(ψ^n)입니다. 여기서 Φ ≒ 1.618 황금비입니다.

위 내용은 C++ 함수 재귀에 대한 자세한 설명: 재귀의 복잡성 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

관련 라벨:
원천:php.cn
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿