실제 응용을 위한 Java 기초 소개: 빅 데이터의 실제 분석
이 튜토리얼은 Java 기초부터 실제 응용까지 빅데이터 분석 기술을 익히는 데 도움이 됩니다. Java 기본 사항(변수, 제어 흐름, 클래스 등), 빅 데이터 도구(Hadoop 생태계, Spark, Hive) 및 실제 사례(OpenFlights에서 비행 데이터 가져오기)가 포함됩니다. Hadoop을 사용하여 데이터를 읽고 처리하며 항공편 목적지에 대해 가장 빈번한 공항을 분석합니다. Spark를 사용하여 목적지까지의 최신 항공편을 드릴다운하고 찾으세요. Hive를 사용하여 데이터를 대화형으로 분석하고 각 공항의 항공편 수를 계산합니다.
Java 기초에서 실무까지: 빅 데이터 실무 분석
소개
빅 데이터 시대가 도래하면서 빅 데이터 분석 기술을 익히는 것이 중요해졌습니다. 이 튜토리얼에서는 Java의 기초부터 실용적인 빅 데이터 분석을 위해 Java를 사용하는 방법까지 안내합니다.
Java 기초
- 변수, 데이터 유형 및 연산자
- 제어 흐름(if-else, for, while)
- 클래스, 객체 및 메소드
- 배열 및 컬렉션(목록, 맵, 세트)
빅 데이터 분석 도구
- Hadoop 생태계(Hadoop, MapReduce, HDFS)
- Spark
- Hive
실제 사례: Java를 사용하여 비행 데이터 분석
1단계: 데이터 가져오기
항공편 다운로드 OpenFlights 데이터세트의 데이터입니다.
2단계: Hadoop을 사용하여 데이터를 읽고 씁니다.
Hadoop 및 MapReduce를 사용하여 데이터를 읽고 처리합니다.
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FlightStats { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "Flight Stats"); job.setJarByClass(FlightStats.class); job.setMapperClass(FlightStatsMapper.class); job.setReducerClass(FlightStatsReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } public static class FlightStatsMapper extends Mapper<Object, Text, Text, IntWritable> { @Override public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String[] line = value.toString().split(","); context.write(new Text(line[1]), new IntWritable(1)); } } public static class FlightStatsReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } context.write(key, new IntWritable(sum)); } } }
3단계: 추가 분석을 위해 Spark 사용
Spark DataFrame 및 SQL 쿼리를 사용하여 데이터를 분석합니다.
import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; public class FlightStatsSpark { public static void main(String[] args) { SparkSession spark = SparkSession.builder().appName("Flight Stats Spark").getOrCreate(); Dataset<Row> flights = spark.read().csv("hdfs:///path/to/flights.csv"); flights.createOrReplaceTempView("flights"); Dataset<Row> top10Airports = spark.sql("SELECT origin, COUNT(*) AS count FROM flights GROUP BY origin ORDER BY count DESC LIMIT 10"); top10Airports.show(10); } }
4단계: Hive 대화형 쿼리 사용
Hive 대화형 쿼리를 사용하여 데이터를 분석합니다.
CREATE TABLE flights (origin STRING, dest STRING, carrier STRING, dep_date STRING, dep_time STRING, arr_date STRING, arr_time STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; LOAD DATA INPATH 'hdfs:///path/to/flights.csv' OVERWRITE INTO TABLE flights; SELECT origin, COUNT(*) AS count FROM flights GROUP BY origin ORDER BY count DESC LIMIT 10;
결론
이 튜토리얼을 통해 Java의 기본 사항과 실용적인 빅데이터 분석을 위해 Java를 사용하는 기술을 마스터했습니다. Hadoop, Spark 및 Hive를 이해하면 대규모 데이터 세트를 효율적으로 분석하고 그로부터 귀중한 통찰력을 추출할 수 있습니다.
위 내용은 실제 응용을 위한 Java 기초 소개: 빅 데이터의 실제 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Apache에서 CGI 디렉토리를 설정하려면 다음 단계를 수행해야합니다. "CGI-BIN"과 같은 CGI 디렉토리를 작성하고 Apache 쓰기 권한을 부여하십시오. Apache 구성 파일에 "Scriptalias"지시록 블록을 추가하여 CGI 디렉토리를 "/cgi-bin"URL에 매핑하십시오. Apache를 다시 시작하십시오.

PHP가 많은 웹 사이트에서 선호되는 기술 스택 인 이유에는 사용 편의성, 강력한 커뮤니티 지원 및 광범위한 사용이 포함됩니다. 1) 배우고 사용하기 쉽고 초보자에게 적합합니다. 2) 거대한 개발자 커뮤니티와 풍부한 자원이 있습니다. 3) WordPress, Drupal 및 기타 플랫폼에서 널리 사용됩니다. 4) 웹 서버와 밀접하게 통합하여 개발 배포를 단순화합니다.

PHP는 서버 측에서 널리 사용되는 스크립팅 언어이며 특히 웹 개발에 적합합니다. 1.PHP는 HTML을 포함하고 HTTP 요청 및 응답을 처리 할 수 있으며 다양한 데이터베이스를 지원할 수 있습니다. 2.PHP는 강력한 커뮤니티 지원 및 오픈 소스 리소스를 통해 동적 웹 컨텐츠, 프로세스 양식 데이터, 액세스 데이터베이스 등을 생성하는 데 사용됩니다. 3. PHP는 해석 된 언어이며, 실행 프로세스에는 어휘 분석, 문법 분석, 편집 및 실행이 포함됩니다. 4. PHP는 사용자 등록 시스템과 같은 고급 응용 프로그램을 위해 MySQL과 결합 할 수 있습니다. 5. PHP를 디버깅 할 때 error_reporting () 및 var_dump ()와 같은 함수를 사용할 수 있습니다. 6. 캐싱 메커니즘을 사용하여 PHP 코드를 최적화하고 데이터베이스 쿼리를 최적화하며 내장 기능을 사용하십시오. 7

Apache를 시작하는 단계는 다음과 같습니다. Apache 설치 (명령 : Sudo apt-get Apache2를 설치하거나 공식 웹 사이트에서 다운로드) 시작 apache (linux : sudo systemctl start : windes (선택 사항, Linux : Sudo SystemCtl

이 기사는 데비안 시스템의 OpenSSL 구성을 확인하여 시스템의 보안 상태를 신속하게 파악하는 데 도움이되는 몇 가지 방법을 소개합니다. 1. OpenSSL 버전을 먼저 확인하고 OpenSSL이 설치되었는지 확인 및 버전 정보를 확인하십시오. 터미널에 다음 명령을 입력하십시오. OpenSSLVERSION이 설치되지 않으면 시스템에 오류가 발생합니다. 2. 구성 파일을 봅니다. OpenSSL의 기본 구성 파일은 일반적으로 /etc/ssl/openssl.cnf에 있습니다. 텍스트 편집기 (예 : Nano)를 사용하여 Sudonano/etc/ssl/openssl.cnf이 파일에는 키, 인증서 경로 및 암호화 알고리즘과 같은 중요한 구성 정보가 포함되어 있습니다. 3. Ope를 활용하십시오

PHP와 Python은 각각 고유 한 장점이 있으며 다양한 시나리오에 적합합니다. 1.PHP는 웹 개발에 적합하며 내장 웹 서버 및 풍부한 기능 라이브러리를 제공합니다. 2. Python은 간결한 구문과 강력한 표준 라이브러리가있는 데이터 과학 및 기계 학습에 적합합니다. 선택할 때 프로젝트 요구 사항에 따라 결정해야합니다.

PHP는 특히 빠른 개발 및 동적 컨텐츠를 처리하는 데 웹 개발에 적합하지만 데이터 과학 및 엔터프라이즈 수준의 애플리케이션에는 적합하지 않습니다. Python과 비교할 때 PHP는 웹 개발에 더 많은 장점이 있지만 데이터 과학 분야에서는 Python만큼 좋지 않습니다. Java와 비교할 때 PHP는 엔터프라이즈 레벨 애플리케이션에서 더 나빠지지만 웹 개발에서는 더 유연합니다. JavaScript와 비교할 때 PHP는 백엔드 개발에서 더 간결하지만 프론트 엔드 개발에서는 JavaScript만큼 좋지 않습니다.

Apache에서 추가 ServerName 지시문을 삭제하려면 다음 단계를 수행 할 수 있습니다. 추가 ServerName Directive를 식별하고 삭제하십시오. Apache를 다시 시작하여 변경 사항이 적용됩니다. 구성 파일을 확인하여 변경 사항을 확인하십시오. 서버를 테스트하여 문제가 해결되었는지 확인하십시오.
