백엔드 개발 파이썬 튜토리얼 Python itertools模块详解

Python itertools模块详解

Jun 06, 2016 am 11:15 AM
itertools python 기준 치수

这货很强大, 必须掌握

文档 链接 http://docs.python.org/2/library/itertools.html

pymotw 链接 http://pymotw.com/2/itertools/

基本是基于文档的翻译和补充,相当于翻译了

itertools用于高效循环的迭代函数集合

组成

总体,整体了解

无限迭代器

代码如下:


迭代器         参数         结果                                                例子
count()     start, [step]   start, start+step, start+2*step, ...                count(10) --> 10 11 12 13 14 ...
cycle()     p               p0, p1, ... plast, p0, p1, ...                      cycle('ABCD') --> A B C D A B C D ...
repeat()    elem [,n]       elem, elem, elem, ... endlessly or up to n times    repeat(10, 3) --> 10 10 10


处理输入序列迭代器

代码如下:


迭代器          参数            结果                                        例子
chain()     p, q, ...           p0, p1, ... plast, q0, q1, ...              chain('ABC', 'DEF') --> A B C D E F
compress()  data, selectors     (d[0] if s[0]), (d[1] if s[1]), ...         compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
dropwhile() pred, seq           seq[n], seq[n+1], starting when pred fails  dropwhile(lambda x: x 6 4 1
groupby()   iterable[, keyfunc] sub-iterators grouped by value of keyfunc(v)
ifilter()   pred, seq           elements of seq where pred(elem) is True    ifilter(lambda x: x%2, range(10)) --> 1 3 5 7 9
ifilterfalse()  pred, seq       elements of seq where pred(elem) is False   ifilterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
islice()    seq, [start,] stop [, step] elements from seq[start:stop:step]  islice('ABCDEFG', 2, None) --> C D E F G
imap()      func, p, q, ...     func(p0, q0), func(p1, q1), ...             imap(pow, (2,3,10), (5,2,3)) --> 32 9 1000
starmap()   func, seq           func(*seq[0]), func(*seq[1]), ...           starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
tee()       it, n               it1, it2 , ... itn splits one iterator into n
takewhile() pred, seq           seq[0], seq[1], until pred fails            takewhile(lambda x: x 1 4
izip()      p, q, ...           (p[0], q[0]), (p[1], q[1]), ...             izip('ABCD', 'xy') --> Ax By
izip_longest()  p, q, ...       (p[0], q[0]), (p[1], q[1]), ...             izip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-

组合生成器

代码如下:


迭代器          参数                        结果
product()       p, q, ... [repeat=1]        cartesian product, equivalent to a nested for-loop
permutations()  p[, r]                      r-length tuples, all possible orderings, no repeated elements
combinations()  p, r                        r-length tuples, in sorted order, no repeated elements
combinations_with_replacement() p, r        r-length tuples, in sorted order, with repeated elements
product('ABCD', repeat=2)                   AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD
permutations('ABCD', 2)                     AB AC AD BA BC BD CA CB CD DA DB DC
combinations('ABCD', 2)                     AB AC AD BC BD CD
combinations_with_replacement('ABCD', 2)    AA AB AC AD BB BC BD CC CD DD

第一部分

itertools.count(start=0, step=1)

创建一个迭代器,生成从n开始的连续整数,如果忽略n,则从0开始计算(注意:此迭代器不支持长整数)

如果超出了sys.maxint,计数器将溢出并继续从-sys.maxint-1开始计算。

定义

代码如下:


def count(start=0, step=1):
    # count(10) --> 10 11 12 13 14 ...
    # count(2.5, 0.5) -> 2.5 3.0 3.5 ...
    n = start
    while True:
        yield n
        n += step


等同于(start + step * i for i in count())

使用

代码如下:


from itertools import *

for i in izip(count(1), ['a', 'b', 'c']):
    print i

(1, 'a')
(2, 'b')
(3, 'c')

itertools.repeat(object[, times])

创建一个迭代器,重复生成object,times(如果已提供)指定重复计数,如果未提供times,将无止尽返回该对象。

定义

代码如下:


def repeat(object, times=None):
    # repeat(10, 3) --> 10 10 10
    if times is None:
        while True:
            yield object
    else:
        for i in xrange(times):
            yield object


使用

代码如下:


from itertools import *

for i in repeat('over-and-over', 5):
    print i

over-and-over
over-and-over
over-and-over
over-and-over
over-and-over

第二部分
itertools.chain(*iterables)

将多个迭代器作为参数, 但只返回单个迭代器, 它产生所有参数迭代器的内容, 就好像他们是来自于一个单一的序列.

代码如下:


def chain(*iterables):
    # chain('ABC', 'DEF') --> A B C D E F
    for it in iterables:
        for element in it:
            yield element


使用

代码如下:


from itertools import *

for i in chain([1, 2, 3], ['a', 'b', 'c']):
    print i
1
2
3
a
b
c


from itertools import chain, imap
def flatmap(f, items):
    return chain.from_iterable(imap(f, items))
>>> list(flatmap(os.listdir, dirs))
>>> ['settings.py', 'wsgi.py', 'templates', 'app.py',
     'templates', 'index.html, 'config.json']

itertools.compress(data, selectors)

提供一个选择列表,对原始数据进行筛选

代码如下:


def compress(data, selectors):
    # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
    return (d for d, s in izip(data, selectors) if s)
itertools.dropwhile(predicate, iterable)


创建一个迭代器,只要函数predicate(item)为True,就丢弃iterable中的项,如果predicate返回False,就会生成iterable中的项和所有后续项。

即:在条件为false之后的第一次, 返回迭代器中剩下来的项.

代码如下:


def dropwhile(predicate, iterable):
    # dropwhile(lambda x: x 6 4 1
    iterable = iter(iterable)
    for x in iterable:
        if not predicate(x):
            yield x
            break
    for x in iterable:
        yield x

使用

代码如下:


from itertools import *

def should_drop(x):
    print 'Testing:', x
    return (x

for i in dropwhile(should_drop, [ -1, 0, 1, 2, 3, 4, 1, -2 ]):
    print 'Yielding:', i

Testing: -1
Testing: 0
Testing: 1
Yielding: 1
Yielding: 2
Yielding: 3
Yielding: 4
Yielding: 1
Yielding: -2

itertools.groupby(iterable[, key])

返回一个产生按照key进行分组后的值集合的迭代器.

如果iterable在多次连续迭代中生成了同一项,则会定义一个组,如果将此函数应用一个分类列表,那么分组将定义该列表中的所有唯一项,key(如果已提供)是一个函数,应用于每一项,如果此函数存在返回值,该值将用于后续项而不是该项本身进行比较,此函数返回的迭代器生成元素(key, group),其中key是分组的键值,group是迭代器,生成组成该组的所有项。

即:按照keyfunc函数对序列每个元素执行后的结果分组(每个分组是一个迭代器), 返回这些分组的迭代器

等价于

代码如下:


class groupby(object):
    # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
    # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
    def __init__(self, iterable, key=None):
        if key is None:
            key = lambda x: x
        self.keyfunc = key
        self.it = iter(iterable)
        self.tgtkey = self.currkey = self.currvalue = object()
    def __iter__(self):
        return self
    def next(self):
        while self.currkey == self.tgtkey:
            self.currvalue = next(self.it)    # Exit on StopIteration
            self.currkey = self.keyfunc(self.currvalue)
        self.tgtkey = self.currkey
        return (self.currkey, self._grouper(self.tgtkey))
    def _grouper(self, tgtkey):
        while self.currkey == tgtkey:
            yield self.currvalue
            self.currvalue = next(self.it)    # Exit on StopIteration
            self.currkey = self.keyfunc(self.currvalue)

应用

代码如下:


from itertools import groupby
qs = [{'date' : 1},{'date' : 2}]
[(name, list(group)) for name, group in itertools.groupby(qs, lambda p:p['date'])]

Out[77]: [(1, [{'date': 1}]), (2, [{'date': 2}])]


>>> from itertools import *
>>> a = ['aa', 'ab', 'abc', 'bcd', 'abcde']
>>> for i, k in groupby(a, len):
...     print i, list(k)
...
2 ['aa', 'ab']
3 ['abc', 'bcd']
5 ['abcde']

另一个例子

代码如下:


from itertools import *
from operator import itemgetter

d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
di = sorted(d.iteritems(), key=itemgetter(1))
for k, g in groupby(di, key=itemgetter(1)):
    print k, map(itemgetter(0), g)


1 ['a', 'c', 'e']
2 ['b', 'd', 'f']
3 ['g']

itertools.ifilter(predicate, iterable)

返回的是迭代器类似于针对列表的内置函数 filter() , 它只包括当测试函数返回true时的项. 它不同于 dropwhile()

创建一个迭代器,仅生成iterable中predicate(item)为True的项,如果predicate为None,将返回iterable中所有计算为True的项

对函数func执行返回真的元素的迭代器

代码如下:


def ifilter(predicate, iterable):
    # ifilter(lambda x: x%2, range(10)) --> 1 3 5 7 9
    if predicate is None:
        predicate = bool
    for x in iterable:
        if predicate(x):
            yield x

使用

代码如下:


from itertools import *

def check_item(x):
    print 'Testing:', x
    return (x

for i in ifilter(check_item, [ -1, 0, 1, 2, 3, 4, 1, -2 ]):
    print 'Yielding:', i

Testing: -1
Yielding: -1
Testing: 0
Yielding: 0
Testing: 1
Testing: 2
Testing: 3
Testing: 4
Testing: 1
Testing: -2
Yielding: -2

itertools.ifilterfalse(predicate, iterable)

和ifilter(函数相反 , 返回一个包含那些测试函数返回false的项的迭代器)

创建一个迭代器,仅生成iterable中predicate(item)为False的项,如果predicate为None,则返回iterable中所有计算为False的项 对函数func执行返回假的元素的迭代器

代码如下:


def ifilterfalse(predicate, iterable):
    # ifilterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
    if predicate is None:
        predicate = bool
    for x in iterable:
        if not predicate(x):
            yield x

使用

代码如下:


from itertools import *

def check_item(x):
    print 'Testing:', x
    return (x

for i in ifilterfalse(check_item, [ -1, 0, 1, 2, 3, 4, 1, -2 ]):
    print 'Yielding:', i

Testing: -1
Testing: 0
Testing: 1
Yielding: 1
Testing: 2
Yielding: 2
Testing: 3
Yielding: 3
Testing: 4
Yielding: 4
Testing: 1
Yielding: 1
Testing: -2

itertools.islice(iterable, stop)

itertools.islice(iterable, start, stop[, step])

返回的迭代器是返回了输入迭代器根据索引来选取的项

创建一个迭代器,生成项的方式类似于切片返回值: iterable[start : stop : step],将跳过前start个项,迭代在stop所指定的位置停止,step指定用于跳过项的步幅。 与切片不同,负值不会用于任何start,stop和step, 如果省略了start,迭代将从0开始,如果省略了step,步幅将采用1.

返回序列seq的从start开始到stop结束的步长为step的元素的迭代器

代码如下:


def islice(iterable, *args):
    # islice('ABCDEFG', 2) --> A B
    # islice('ABCDEFG', 2, 4) --> C D
    # islice('ABCDEFG', 2, None) --> C D E F G
    # islice('ABCDEFG', 0, None, 2) --> A C E G
    s = slice(*args)
    it = iter(xrange(s.start or 0, s.stop or sys.maxint, s.step or 1))
    nexti = next(it)
    for i, element in enumerate(iterable):
        if i == nexti:
            yield element
            nexti = next(it)

使用

代码如下:


from itertools import *

print 'Stop at 5:'
for i in islice(count(), 5):
    print i

print 'Start at 5, Stop at 10:'
for i in islice(count(), 5, 10):
    print i

print 'By tens to 100:'
for i in islice(count(), 0, 100, 10):
    print i

Stop at 5:
0
1
2
3
4
Start at 5, Stop at 10:
5
6
7
8
9
By tens to 100:
0
10
20
30
40
50
60
70
80
90

itertools.imap(function, *iterables)

创建一个迭代器,生成项function(i1, i2, ..., iN),其中i1,i2...iN分别来自迭代器iter1,iter2 ... iterN,如果function为None,则返回(i1, i2, ..., iN)形式的元组,只要提供的一个迭代器不再生成值,迭代就会停止。

即:返回一个迭代器, 它是调用了一个其值在输入迭代器上的函数, 返回结果. 它类似于内置函数 map() , 只是前者在任意输入迭代器结束后就停止(而不是插入None值来补全所有的输入).

返回序列每个元素被func执行后返回值的序列的迭代器

代码如下:


def imap(function, *iterables):
    # imap(pow, (2,3,10), (5,2,3)) --> 32 9 1000
    iterables = map(iter, iterables)
    while True:
        args = [next(it) for it in iterables]
        if function is None:
            yield tuple(args)
        else:
            yield function(*args)

使用

代码如下:


from itertools import *

print 'Doubles:'
for i in imap(lambda x:2*x, xrange(5)):
    print i

print 'Multiples:'
for i in imap(lambda x,y:(x, y, x*y), xrange(5), xrange(5,10)):
    print '%d * %d = %d' % i

Doubles:
0
2
4
6
8
Multiples:
0 * 5 = 0
1 * 6 = 6
2 * 7 = 14
3 * 8 = 24
4 * 9 = 36

itertools.starmap(function, iterable)

创建一个迭代器,生成值func(*item),其中item来自iterable,只有当iterable生成的项适用于这种调用函数的方式时,此函数才有效。

对序列seq的每个元素作为func的参数列表执行, 返回执行结果的迭代器

代码如下:


def starmap(function, iterable):
    # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
    for args in iterable:
        yield function(*args)


使用

代码如下:


from itertools import *

values = [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]
for i in starmap(lambda x,y:(x, y, x*y), values):
    print '%d * %d = %d' % i

0 * 5 = 0
1 * 6 = 6
2 * 7 = 14
3 * 8 = 24
4 * 9 = 36

itertools.tee(iterable[, n=2])

返回一些基于单个原始输入的独立迭代器(默认为2). 它和Unix上的tee工具有点语义相似, 也就是说它们都重复读取输入设备中的值并将值写入到一个命名文件和标准输出中

从iterable创建n个独立的迭代器,创建的迭代器以n元组的形式返回,n的默认值为2,此函数适用于任何可迭代的对象,但是,为了克隆原始迭代器,生成的项会被缓存,并在所有新创建的迭代器中使用,一定要注意,不要在调用tee()之后使用原始迭代器iterable,否则缓存机制可能无法正确工作。

把一个迭代器分为n个迭代器, 返回一个元组.默认是两个

代码如下:


def tee(iterable, n=2):
    it = iter(iterable)
    deques = [collections.deque() for i in range(n)]
    def gen(mydeque):
        while True:
            if not mydeque:             # when the local deque is empty
                newval = next(it)       # fetch a new value and
                for d in deques:        # load it to all the deques
                    d.append(newval)
            yield mydeque.popleft()
    return tuple(gen(d) for d in deques)

使用

代码如下:


from itertools import *

r = islice(count(), 5)
i1, i2 = tee(r)

for i in i1:
    print 'i1:', i
for i in i2:
    print 'i2:', i

i1: 0
i1: 1
i1: 2
i1: 3
i1: 4
i2: 0
i2: 1
i2: 2
i2: 3
i2: 4

itertools.takewhile(predicate, iterable)

和dropwhile相反

创建一个迭代器,生成iterable中predicate(item)为True的项,只要predicate计算为False,迭代就会立即停止。

即:从序列的头开始, 直到执行函数func失败.

代码如下:


def takewhile(predicate, iterable):
    # takewhile(lambda x: x 1 4
    for x in iterable:
        if predicate(x):
            yield x
        else:
            break

使用

代码如下:


from itertools import *

def should_take(x):
    print 'Testing:', x
    return (x

for i in takewhile(should_take, [ -1, 0, 1, 2, 3, 4, 1, -2 ]):
    print 'Yielding:', i

Testing: -1
Yielding: -1
Testing: 0
Yielding: 0
Testing: 1
Yielding: 1
Testing: 2

itertools.izip(*iterables)

返回一个合并了多个迭代器为一个元组的迭代器. 它类似于内置函数zip(), 只是它返回的是一个迭代器而不是一个列表

创建一个迭代器,生成元组(i1, i2, ... iN),其中i1,i2 ... iN 分别来自迭代器iter1,iter2 ... iterN,只要提供的某个迭代器不再生成值,迭代就会停止,此函数生成的值与内置的zip()函数相同。

代码如下:


izip(iter1, iter2, ... iterN):
返回:(it1[0],it2 [0], it3[0], ..), (it1[1], it2[1], it3[1], ..)...

def izip(*iterables):
    # izip('ABCD', 'xy') --> Ax By
    iterators = map(iter, iterables)
    while iterators:
        yield tuple(map(next, iterators))

使用

代码如下:


from itertools import *

for i in izip([1, 2, 3], ['a', 'b', 'c']):
    print i
(1, 'a')
(2, 'b')
(3, 'c')


itertools.izip_longest(*iterables[, fillvalue])

与izip()相同,但是迭代过程会持续到所有输入迭代变量iter1,iter2等都耗尽为止,如果没有使用fillvalue关键字参数指定不同的值,则使用None来填充已经使用的迭代变量的值。

代码如下:


class ZipExhausted(Exception):
    pass

def izip_longest(*args, **kwds):
    # izip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
    fillvalue = kwds.get('fillvalue')
    counter = [len(args) - 1]
    def sentinel():
        if not counter[0]:
            raise ZipExhausted
        counter[0] -= 1
        yield fillvalue
    fillers = repeat(fillvalue)
    iterators = [chain(it, sentinel(), fillers) for it in args]
    try:
        while iterators:
            yield tuple(map(next, iterators))
    except ZipExhausted:
        pass

第三部分

itertools.product(*iterables[, repeat])

笛卡尔积

创建一个迭代器,生成表示item1,item2等中的项目的笛卡尔积的元组,repeat是一个关键字参数,指定重复生成序列的次数。

代码如下:


def product(*args, **kwds):
    # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
    # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
    pools = map(tuple, args) * kwds.get('repeat', 1)
    result = [[]]
    for pool in pools:
        result = [x+[y] for x in result for y in pool]
    for prod in result:
        yield tuple(prod)

例子

代码如下:


import itertools
a = (1, 2, 3)
b = ('A', 'B', 'C')
c = itertools.product(a,b)
for elem in c:
    print elem

(1, 'A')
(1, 'B')
(1, 'C')
(2, 'A')
(2, 'B')
(2, 'C')
(3, 'A')
(3, 'B')
(3, 'C')

itertools.permutations(iterable[, r])

排列

创建一个迭代器,返回iterable中所有长度为r的项目序列,如果省略了r,那么序列的长度与iterable中的项目数量相同: 返回p中任意取r个元素做排列的元组的迭代器

代码如下:


def permutations(iterable, r=None):
    # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
    # permutations(range(3)) --> 012 021 102 120 201 210
    pool = tuple(iterable)
    n = len(pool)
    r = n if r is None else r
    if r > n:
        return
    indices = range(n)
    cycles = range(n, n-r, -1)
    yield tuple(pool[i] for i in indices[:r])
    while n:
        for i in reversed(range(r)):
            cycles[i] -= 1
            if cycles[i] == 0:
                indices[i:] = indices[i+1:] + indices[i:i+1]
                cycles[i] = n - i
            else:
                j = cycles[i]
                indices[i], indices[-j] = indices[-j], indices[i]
                yield tuple(pool[i] for i in indices[:r])
                break
        else:
            return
也可以用product实现

def permutations(iterable, r=None):
    pool = tuple(iterable)
    n = len(pool)
    r = n if r is None else r
    for indices in product(range(n), repeat=r):
        if len(set(indices)) == r:
            yield tuple(pool[i] for i in indices)

itertools.combinations(iterable, r)

创建一个迭代器,返回iterable中所有长度为r的子序列,返回的子序列中的项按输入iterable中的顺序排序 (不带重复)

代码如下:


def combinations(iterable, r):
    # combinations('ABCD', 2) --> AB AC AD BC BD CD
    # combinations(range(4), 3) --> 012 013 023 123
    pool = tuple(iterable)
    n = len(pool)
    if r > n:
        return
    indices = range(r)
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != i + n - r:
                break
        else:
            return
        indices[i] += 1
        for j in range(i+1, r):
            indices[j] = indices[j-1] + 1
        yield tuple(pool[i] for i in indices)

#或者
def combinations(iterable, r):
    pool = tuple(iterable)
    n = len(pool)
    for indices in permutations(range(n), r):
        if sorted(indices) == list(indices):
            yield tuple(pool[i] for i in indices)

itertools.combinations_with_replacement(iterable, r)

创建一个迭代器,返回iterable中所有长度为r的子序列,返回的子序列中的项按输入iterable中的顺序排序 (带重复)

代码如下:


def combinations_with_replacement(iterable, r):
    # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
    pool = tuple(iterable)
    n = len(pool)
    if not n and r:
        return
    indices = [0] * r
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != n - 1:
                break
        else:
            return
        indices[i:] = [indices[i] + 1] * (r - i)
        yield tuple(pool[i] for i in indices)
或者
def combinations_with_replacement(iterable, r):
    pool = tuple(iterable)
    n = len(pool)
    for indices in product(range(n), repeat=r):
        if sorted(indices) == list(indices):
            yield tuple(pool[i] for i in indices)

第四部分

扩展

使用现有扩展功能

代码如下:


def take(n, iterable):
    "Return first n items of the iterable as a list"
    return list(islice(iterable, n))

def tabulate(function, start=0):
    "Return function(0), function(1), ..."
    return imap(function, count(start))

def consume(iterator, n):
    "Advance the iterator n-steps ahead. If n is none, consume entirely."
    # Use functions that consume iterators at C speed.
    if n is None:
        # feed the entire iterator into a zero-length deque
        collections.deque(iterator, maxlen=0)
    else:
        # advance to the empty slice starting at position n
        next(islice(iterator, n, n), None)

def nth(iterable, n, default=None):
    "Returns the nth item or a default value"
    return next(islice(iterable, n, None), default)

def quantify(iterable, pred=bool):
    "Count how many times the predicate is true"
    return sum(imap(pred, iterable))

def padnone(iterable):
    """Returns the sequence elements and then returns None indefinitely.

    Useful for emulating the behavior of the built-in map() function.
    """
    return chain(iterable, repeat(None))

def ncycles(iterable, n):
    "Returns the sequence elements n times"
    return chain.from_iterable(repeat(tuple(iterable), n))

def dotproduct(vec1, vec2):
    return sum(imap(operator.mul, vec1, vec2))

def flatten(listOfLists):
    "Flatten one level of nesting"
    return chain.from_iterable(listOfLists)

def repeatfunc(func, times=None, *args):
    """Repeat calls to func with specified arguments.

    Example:  repeatfunc(random.random)
    """
    if times is None:
        return starmap(func, repeat(args))
    return starmap(func, repeat(args, times))

def pairwise(iterable):
    "s -> (s0,s1), (s1,s2), (s2, s3), ..."
    a, b = tee(iterable)
    next(b, None)
    return izip(a, b)

def grouper(iterable, n, fillvalue=None):
    "Collect data into fixed-length chunks or blocks"
    # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx
    args = [iter(iterable)] * n
    return izip_longest(fillvalue=fillvalue, *args)

def roundrobin(*iterables):
    "roundrobin('ABC', 'D', 'EF') --> A D E B F C"
    # Recipe credited to George Sakkis
    pending = len(iterables)
    nexts = cycle(iter(it).next for it in iterables)
    while pending:
        try:
            for next in nexts:
                yield next()
        except StopIteration:
            pending -= 1
            nexts = cycle(islice(nexts, pending))

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

def unique_everseen(iterable, key=None):
    "List unique elements, preserving order. Remember all elements ever seen."
    # unique_everseen('AAAABBBCCDAABBB') --> A B C D
    # unique_everseen('ABBCcAD', str.lower) --> A B C D
    seen = set()
    seen_add = seen.add
    if key is None:
        for element in ifilterfalse(seen.__contains__, iterable):
            seen_add(element)
            yield element
    else:
        for element in iterable:
            k = key(element)
            if k not in seen:
                seen_add(k)
                yield element

def unique_justseen(iterable, key=None):
    "List unique elements, preserving order. Remember only the element just seen."
    # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
    # unique_justseen('ABBCcAD', str.lower) --> A B C A D
    return imap(next, imap(itemgetter(1), groupby(iterable, key)))

def iter_except(func, exception, first=None):
    """ Call a function repeatedly until an exception is raised.

    Converts a call-until-exception interface to an iterator interface.
    Like __builtin__.iter(func, sentinel) but uses an exception instead
    of a sentinel to end the loop.

    Examples:
        bsddbiter = iter_except(db.next, bsddb.error, db.first)
        heapiter = iter_except(functools.partial(heappop, h), IndexError)
        dictiter = iter_except(d.popitem, KeyError)
        dequeiter = iter_except(d.popleft, IndexError)
        queueiter = iter_except(q.get_nowait, Queue.Empty)
        setiter = iter_except(s.pop, KeyError)

    """
    try:
        if first is not None:
            yield first()
        while 1:
            yield func()
    except exception:
        pass

def random_product(*args, **kwds):
    "Random selection from itertools.product(*args, **kwds)"
    pools = map(tuple, args) * kwds.get('repeat', 1)
    return tuple(random.choice(pool) for pool in pools)

def random_permutation(iterable, r=None):
    "Random selection from itertools.permutations(iterable, r)"
    pool = tuple(iterable)
    r = len(pool) if r is None else r
    return tuple(random.sample(pool, r))

def random_combination(iterable, r):
    "Random selection from itertools.combinations(iterable, r)"
    pool = tuple(iterable)
    n = len(pool)
    indices = sorted(random.sample(xrange(n), r))
    return tuple(pool[i] for i in indices)

def random_combination_with_replacement(iterable, r):
    "Random selection from itertools.combinations_with_replacement(iterable, r)"
    pool = tuple(iterable)
    n = len(pool)
    indices = sorted(random.randrange(n) for i in xrange(r))
    return tuple(pool[i] for i in indices)

def tee_lookahead(t, i):
    """Inspect the i-th upcomping value from a tee object
    while leaving the tee object at its current position.

    Raise an IndexError if the underlying iterator doesn't
    have enough values.

    """
    for value in islice(t.__copy__(), i, None):
        return value
    raise IndexError(i)

自定义扩展

将序列按大小切分,更好的性能

代码如下:


from itertools import chain, islice
def chunks(iterable, size, format=iter):
    it = iter(iterable)
    while True:
        yield format(chain((it.next(),), islice(it, size - 1)))

>>> l = ["a", "b", "c", "d", "e", "f", "g"]
>>> for chunk in chunks(l, 3, tuple):...
        print chunk...
("a", "b", "c")
("d", "e", "f")
("g",)

补充

迭代工具,你最好的朋友

迭代工具模块包含了操做指定的函数用于操作迭代器。想复制一个迭代器出来?链接两个迭代器?以one liner(这里的one-liner只需一行代码能搞定的任务)用内嵌的列表组合一组值?不使用list创建Map/Zip?···,你要做的就是 import itertools,举个例子吧:

四匹马赛跑到达终点排名的所有可能性:

代码如下:


>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)

>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
 (1, 2, 4, 3),
 (1, 3, 2, 4),
 (1, 3, 4, 2),
 (1, 4, 2, 3),
 (1, 4, 3, 2),
 (2, 1, 3, 4),
 (2, 1, 4, 3),
 (2, 3, 1, 4),
 (2, 3, 4, 1),
 (2, 4, 1, 3),
 (2, 4, 3, 1),
 (3, 1, 2, 4),
 (3, 1, 4, 2),
 (3, 2, 1, 4),
 (3, 2, 4, 1),
 (3, 4, 1, 2),
 (3, 4, 2, 1),
 (4, 1, 2, 3),
 (4, 1, 3, 2),
 (4, 2, 1, 3),
 (4, 2, 3, 1),
 (4, 3, 1, 2),
 (4, 3, 2, 1)]

理解迭代的内部机制: 迭代(iteration)就是对可迭代对象(iterables,实现了__iter__()方法)和迭代器(iterators,实现了__next__()方法)的一个操作过程。可迭代对象是任何可返回一个迭代器的对象,迭代器是应用在迭代对象中迭代的对象,换一种方式说的话就是:iterable对象的__iter__()方法可以返回iterator对象,iterator通过调用next()方法获取其中的每一个值(译者注),读者可以结合Java API中的 Iterable接口和Iterator接口进行类比。

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP와 Python : 다른 패러다임이 설명되었습니다 PHP와 Python : 다른 패러다임이 설명되었습니다 Apr 18, 2025 am 12:26 AM

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP와 Python 중에서 선택 : 가이드 PHP와 Python 중에서 선택 : 가이드 Apr 18, 2025 am 12:24 AM

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

Python vs. JavaScript : 학습 곡선 및 사용 편의성 Python vs. JavaScript : 학습 곡선 및 사용 편의성 Apr 16, 2025 am 12:12 AM

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

PHP와 Python : 그들의 역사에 깊은 다이빙 PHP와 Python : 그들의 역사에 깊은 다이빙 Apr 18, 2025 am 12:25 AM

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

Windows 8에서 코드를 실행할 수 있습니다 Windows 8에서 코드를 실행할 수 있습니다 Apr 15, 2025 pm 07:24 PM

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Apr 15, 2025 pm 08:18 PM

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

터미널 VSCODE에서 프로그램을 실행하는 방법 터미널 VSCODE에서 프로그램을 실행하는 방법 Apr 15, 2025 pm 06:42 PM

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

VScode 확장자가 악의적입니까? VScode 확장자가 악의적입니까? Apr 15, 2025 pm 07:57 PM

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

See all articles