python实用代码片段收集贴
获取一个类的所有子类
代码如下:
def itersubclasses(cls, _seen=None):
"""Generator over all subclasses of a given class in depth first order."""
if not isinstance(cls, type):
raise TypeError(_('itersubclasses must be called with '
'new-style classes, not %.100r') % cls)
_seen = _seen or set()
try:
subs = cls.__subclasses__()
except TypeError: # fails only when cls is type
subs = cls.__subclasses__(cls)
for sub in subs:
if sub not in _seen:
_seen.add(sub)
yield sub
for sub in itersubclasses(sub, _seen):
yield sub
简单的线程配合
代码如下:
import threading
is_done = threading.Event()
consumer = threading.Thread(
target=self.consume_results,
args=(key, self.task, runner.result_queue, is_done))
consumer.start()
self.duration = runner.run(
name, kw.get("context", {}), kw.get("args", {}))
is_done.set()
consumer.join() #主线程堵塞,直到consumer运行结束
多说一点,threading.Event()也可以被替换为threading.Condition(),condition有notify(), wait(), notifyAll()。解释如下:
代码如下:
The wait() method releases the lock, and then blocks until it is awakened by a notify() or notifyAll() call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is also possible to specify a timeout.
The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The notifyAll() method wakes up all threads waiting for the condition variable.
Note: the notify() and notifyAll() methods don't release the lock; this means that the thread or threads awakened will not return from their wait() call immediately, but only when the thread that called notify() or notifyAll() finally relinquishes ownership of the lock.
代码如下:
# Consume one item
cv.acquire()
while not an_item_is_available():
cv.wait()
get_an_available_item()
cv.release()
# Produce one item
cv.acquire()
make_an_item_available()
cv.notify()
cv.release()
计算运行时间
代码如下:
class Timer(object):
def __enter__(self):
self.error = None
self.start = time.time()
return self
def __exit__(self, type, value, tb):
self.finish = time.time()
if type:
self.error = (type, value, tb)
def duration(self):
return self.finish - self.start
with Timer() as timer:
func()
return timer.duration()
元类
__new__()方法接收到的参数依次是:
当前准备创建的类的对象;
类的名字;
类继承的父类集合;
类的方法集合;
代码如下:
class ModelMetaclass(type):
def __new__(cls, name, bases, attrs):
if name=='Model':
return type.__new__(cls, name, bases, attrs)
mappings = dict()
for k, v in attrs.iteritems():
if isinstance(v, Field):
print('Found mapping: %s==>%s' % (k, v))
mappings[k] = v
for k in mappings.iterkeys():
attrs.pop(k)
attrs['__table__'] = name # 假设表名和类名一致
attrs['__mappings__'] = mappings # 保存属性和列的映射关系
return type.__new__(cls, name, bases, attrs)
class Model(dict):
__metaclass__ = ModelMetaclass
def __init__(self, **kw):
super(Model, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Model' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
def save(self):
fields = []
params = []
args = []
for k, v in self.__mappings__.iteritems():
fields.append(v.name)
params.append('?')
args.append(getattr(self, k, None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args))
class Field(object):
def __init__(self, name, column_type):
self.name = name
self.column_type = column_type
def __str__(self):
return '' % (self.__class__.__name__, self.name)
class StringField(Field):
def __init__(self, name):
super(StringField, self).__init__(name, 'varchar(100)')
class IntegerField(Field):
def __init__(self, name):
super(IntegerField, self).__init__(name, 'bigint')
class User(Model):
# 定义类的属性到列的映射:
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password')
# 创建一个实例:
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
# 保存到数据库:
u.save()
输出如下:
代码如下:
Found model: User
Found mapping: email ==>
Found mapping: password ==>
Found mapping: id ==>
Found mapping: name ==>
SQL: insert into User (password,email,username,uid) values (?,?,?,?)
ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]
SQLAlchemy简单使用
代码如下:
# 导入:
from sqlalchemy import Column, String, create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base
# 创建对象的基类:
Base = declarative_base()
# 定义User对象:
class User(Base):
# 表的名字:
__tablename__ = 'user'
# 表的结构:
id = Column(String(20), primary_key=True)
name = Column(String(20))
# 初始化数据库连接:
engine = create_engine('mysql+mysqlconnector://root:password@localhost:3306/test') # '数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'
# 创建DBSession类型:
DBSession = sessionmaker(bind=engine)
# 创建新User对象:
new_user = User(id='5', name='Bob')
# 添加到session:
session.add(new_user)
# 提交即保存到数据库:
session.commit()
# 创建Query查询,filter是where条件,最后调用one()返回唯一行,如果调用all()则返回所有行:
user = session.query(User).filter(User.id=='5').one()
# 关闭session:
session.close()
WSGI简单使用和Web框架Flask的简单使用
代码如下:
from wsgiref.simple_server import make_server
def application(environ, start_response):
start_response('200 OK', [('Content-Type', 'text/html')])
return '
Hello, web!
'# 创建一个服务器,IP地址为空,端口是8000,处理函数是application:
httpd = make_server('', 8000, application)
print "Serving HTTP on port 8000..."
# 开始监听HTTP请求:
httpd.serve_forever()
了解了WSGI框架,我们发现:其实一个Web App,就是写一个WSGI的处理函数,针对每个HTTP请求进行响应。
但是如何处理HTTP请求不是问题,问题是如何处理100个不同的URL。
一个最简单和最土的想法是从environ变量里取出HTTP请求的信息,然后逐个判断。
代码如下:
from flask import Flask
from flask import request
app = Flask(__name__)
@app.route('/', methods=['GET', 'POST'])
def home():
return '
Home
'@app.route('/signin', methods=['GET'])
def signin_form():
return ''''''
@app.route('/signin', methods=['POST'])
def signin():
# 需要从request对象读取表单内容:
if request.form['username']=='admin' and request.form['password']=='password':
return '
Hello, admin!
'return '
Bad username or password.
'if __name__ == '__main__':
app.run()
格式化显示json
代码如下:
print(json.dumps(data, indent=4))
# 或者
import pprint
pprint.pprint(data)
实现类似Java或C中的枚举
代码如下:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import itertools
import sys
class ImmutableMixin(object):
_inited = False
def __init__(self):
self._inited = True
def __setattr__(self, key, value):
if self._inited:
raise Exception("unsupported action")
super(ImmutableMixin, self).__setattr__(key, value)
class EnumMixin(object):
def __iter__(self):
for k, v in itertools.imap(lambda x: (x, getattr(self, x)), dir(self)):
if not k.startswith('_'):
yield v
class _RunnerType(ImmutableMixin, EnumMixin):
SERIAL = "serial"
CONSTANT = "constant"
CONSTANT_FOR_DURATION = "constant_for_duration"
RPS = "rps"
if __name__=="__main__":
print _RunnerType.CONSTANT
创建文件时指定权限
代码如下:
import os
def write_to_file(path, contents, umask=None):
"""Write the given contents to a file
:param path: Destination file
:param contents: Desired contents of the file
:param umask: Umask to set when creating this file (will be reset)
"""
if umask:
saved_umask = os.umask(umask)
try:
with open(path, 'w') as f:
f.write(contents)
finally:
if umask:
os.umask(saved_umask)
if __name__ == '__main__':
write_to_file('/home/kong/tmp', 'test', 31)
# Then you will see a file is created with permission 640.
# Warning: If the file already exists, its permission will not be changed.
# Note:For file, default all permission is 666, and 777 for directory.
多进程并发执行
代码如下:
import multiprocessing
import time
import os
def run(flag):
print "flag: %s, sleep 2s in run" % flag
time.sleep(2)
print "%s exist" % flag
return flag
if __name__ == '__main__':
pool = multiprocessing.Pool(3)
iter_result = pool.imap(run, xrange(6))
print "sleep 5s\n\n"
time.sleep(5)
for i in range(6):
try:
result = iter_result.next(600)
except multiprocessing.TimeoutError as e:
raise
print result
pool.close()
pool.join()
运行时自动填充函数参数
代码如下:
import decorator
def default_from_global(arg_name, env_name):
def default_from_global(f, *args, **kwargs):
id_arg_index = f.func_code.co_varnames.index(arg_name)
args = list(args)
if args[id_arg_index] is None:
args[id_arg_index] = get_global(env_name)
if not args[id_arg_index]:
print("Missing argument: --%(arg_name)s" % {"arg_name": arg_name})
return(1)
return f(*args, **kwargs)
return decorator.decorator(default_from_global)
# 如下是一个装饰器,可以用在需要自动填充参数的函数上。功能是:
# 如果没有传递函数的deploy_id参数,那么就从环境变量中获取(调用自定义的get_global函数)
with_default_deploy_id = default_from_global('deploy_id', ENV_DEPLOYMENT)
嵌套装饰器
validator函数装饰func1,func1使用时接收参数(*arg, **kwargs),而func1又装饰func2(其实就是Rally中的scenario函数),给func2增加validators属性,是一个函数的列表,函数的接收参数config, clients, task。这些函数最终调用func1,传入参数(config, clients, task, *args, **kwargs),所以func1定义时参数是(config, clients, task, *arg, **kwargs)
最终实现的效果是,func2有很多装饰器,每个都会接收自己的参数,做一些校验工作。
代码如下:
def validator(fn):
"""Decorator that constructs a scenario validator from given function.
Decorated function should return ValidationResult on error.
:param fn: function that performs validation
:returns: rally scenario validator
"""
def wrap_given(*args, **kwargs):
"""Dynamic validation decorator for scenario.
:param args: the arguments of the decorator of the benchmark scenario
ex. @my_decorator("arg1"), then args = ('arg1',)
:param kwargs: the keyword arguments of the decorator of the scenario
ex. @my_decorator(kwarg1="kwarg1"), then kwargs = {"kwarg1": "kwarg1"}
"""
def wrap_validator(config, clients, task):
return (fn(config, clients, task, *args, **kwargs) or
ValidationResult())
def wrap_scenario(scenario):
wrap_validator.permission = getattr(fn, "permission",
consts.EndpointPermission.USER)
if not hasattr(scenario, "validators"):
scenario.validators = []
scenario.validators.append(wrap_validator)
return scenario
return wrap_scenario
return wrap_given
inspect库的一些常见用法
inspect.getargspec(func) 获取函数参数的名称和默认值,返回一个四元组(args, varargs, keywords, defaults),其中:
args是参数名称的列表;
varargs和keywords是*号和**号的变量名称;
defaults是参数默认值的列表;
inspect.getcallargs(func[, *args][, **kwds]) 绑定函数参数。返回绑定后函数的入参字典。
python中的私有属性和函数
Python把以两个或以上下划线字符开头且没有以两个或以上下划线结尾的变量当作私有变量。私有变量会在代码生成之前被转换为长格式(变为公有),这个过程叫"Private name mangling",如类A里的__private标识符将被转换为_A__private,但当类名全部以下划线命名的时候,Python就不再执行轧压。而且,虽然叫私有变量,仍然有可能被访问或修改(使用_classname__membername),所以, 总结如下:
无论是单下划线还是双下划线开头的成员,都是希望外部程序开发者不要直接使用这些成员变量和这些成员函数,只是双下划线从语法上能够更直接的避免错误的使用,但是如果按照_类名__成员名则依然可以访问到。单下划线的在动态调试时可能会方便一些,只要项目组的人都遵守下划线开头的成员不直接使用,那使用单下划线或许会更好。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











XML을 PDF로 직접 변환하는 응용 프로그램은 근본적으로 다른 두 형식이므로 찾을 수 없습니다. XML은 데이터를 저장하는 데 사용되는 반면 PDF는 문서를 표시하는 데 사용됩니다. 변환을 완료하려면 Python 및 ReportLab과 같은 프로그래밍 언어 및 라이브러리를 사용하여 XML 데이터를 구문 분석하고 PDF 문서를 생성 할 수 있습니다.

XML 구조가 유연하고 다양하기 때문에 모든 XML 파일을 PDF로 변환 할 수있는 앱은 없습니다. XML에서 PDF의 핵심은 데이터 구조를 페이지 레이아웃으로 변환하는 것입니다. XML을 구문 분석하고 PDF를 생성해야합니다. 일반적인 방법으로는 요소 트리와 같은 파이썬 라이브러리를 사용한 XML 및 ReportLab 라이브러리를 사용하여 PDF를 생성하는 XML을 구문 분석합니다. 복잡한 XML의 경우 XSLT 변환 구조를 사용해야 할 수도 있습니다. 성능을 최적화 할 때는 멀티 스레드 또는 멀티 프로세스 사용을 고려하고 적절한 라이브러리를 선택하십시오.

모바일 XML에서 PDF의 속도는 다음 요인에 따라 다릅니다. XML 구조의 복잡성. 모바일 하드웨어 구성 변환 방법 (라이브러리, 알고리즘) 코드 품질 최적화 방법 (효율적인 라이브러리 선택, 알고리즘 최적화, 캐시 데이터 및 다중 스레딩 사용). 전반적으로 절대적인 답변은 없으며 특정 상황에 따라 최적화해야합니다.

단일 애플리케이션으로 휴대 전화에서 직접 XML에서 PDF 변환을 완료하는 것은 불가능합니다. 두 단계를 통해 달성 할 수있는 클라우드 서비스를 사용해야합니다. 1. 클라우드에서 XML을 PDF로 변환하십시오. 2. 휴대 전화에서 변환 된 PDF 파일에 액세스하거나 다운로드하십시오.

XML 이미지를 먼저 변환하려면 먼저 XML 데이터 구조를 결정한 다음 Python의 Matplotlib와 같은 적절한 그래픽 라이브러리를 선택하고 데이터 구조를 기반으로 시각화 전략을 선택하고 데이터 볼륨 및 이미지 형식을 고려하고 효율적인 라이브러리를 수행하거나 필요에 따라 PNG, JPEG 또는 SVG로 저장하십시오.

XML 서식 도구는 규칙에 따라 코드를 입력하여 가독성과 이해를 향상시킬 수 있습니다. 도구를 선택할 때는 사용자 정의 기능, 특수 상황 처리, 성능 및 사용 편의성에주의하십시오. 일반적으로 사용되는 도구 유형에는 온라인 도구, IDE 플러그인 및 명령 줄 도구가 포함됩니다.

XML 미화는 합리적인 압입, 라인 브레이크 및 태그 구성을 포함하여 기본적으로 가독성을 향상시키고 있습니다. 원칙은 XML 트리를 가로 지르고 레벨에 따라 들여 쓰기를 추가하고 텍스트가 포함 된 빈 태그와 태그를 처리하는 것입니다. Python의 xml.etree.elementtree 라이브러리는 위의 미화 프로세스를 구현할 수있는 편리한 Pretty_XML () 기능을 제공합니다.

XML을 통해 이미지를 생성하려면 XML에서 메타 데이터 (크기, 색상)를 기반으로 이미지를 생성하기 위해 브리지로 그래프 라이브러리 (예 : Pillow 및 JFreeChart)를 사용해야합니다. 이미지의 크기를 제어하는 열쇠는 & lt; width & gt의 값을 조정하는 것입니다. 및 & lt; 높이 & gt; XML의 태그. 그러나 실제 애플리케이션에서 XML 구조의 복잡성, 그래프 드로잉의 편향, 이미지 생성 속도 및 메모리 소비 및 이미지 형식 선택은 모두 생성 된 이미지 크기에 영향을 미칩니다. 따라서 그래픽 라이브러리에 능숙한 XML 구조에 대한 깊은 이해가 필요하고 최적화 알고리즘 및 이미지 형식 선택과 같은 요소를 고려해야합니다.
