> 백엔드 개발 > 파이썬 튜토리얼 > Python中的装饰器用法详解

Python中的装饰器用法详解

WBOY
풀어 주다: 2016-06-06 11:21:41
원래의
1156명이 탐색했습니다.

本文实例讲述了Python中的装饰器用法。分享给大家供大家参考。具体分析如下:

这里还是先由stackoverflow上面的一个问题引起吧,如果使用如下的代码:

代码如下:

@makebold
@makeitalic
def say():
   return "Hello"


打印出如下的输出:

Hello
你会怎么做?最后给出的答案是:

代码如下:

def makebold(fn):
    def wrapped():
        return "" + fn() + ""
    return wrapped
 
def makeitalic(fn):
    def wrapped():
        return "" + fn() + ""
    return wrapped
 
@makebold
@makeitalic
def hello():
    return "hello world"
 
print hello() ## 返回 hello world


现在我们来看看如何从一些最基础的方式来理解Python的装饰器。

代码如下:

def foo():
    print 'in foo()'
foo()


这是一个很无聊的函数没错。但是突然有一个更无聊的人,我们称呼他为B君,说我想看看执行这个函数用了多长时间,好吧,那么我们可以这样做:

代码如下:

import time
def foo():
    start = time.clock()
    print 'in foo()'
    end = time.clock()
    print 'used:', end - start
 
foo()


很好,功能看起来无懈可击。可是蛋疼的B君此刻突然不想看这个函数了,他对另一个叫foo2的函数产生了更浓厚的兴趣。

怎么办呢?如果把以上新增加的代码复制到foo2里,这就犯了大忌了~复制什么的难道不是最讨厌了么!而且,如果B君继续看了其他的函数呢?

1.2. 以不变应万变,是变也

还记得吗,函数在Python中是一等公民,那么我们可以考虑重新定义一个函数timeit,将foo的引用传递给他,然后在timeit中调用foo并进行计时,这样,我们就达到了不改动foo定义的目的,而且,不论B君看了多少个函数,我们都不用去修改函数定义了!

代码如下:

import time
 
def foo():
    print 'in foo()'
 
def timeit(func):
    start = time.clock()
    func()
    end =time.clock()
    print 'used:', end - start
 
timeit(foo)


看起来逻辑上并没有问题,一切都很美好并且运作正常!……等等,我们似乎修改了调用部分的代码。原本我们是这样调用的:foo(),修改以后变成了:timeit(foo)。这样的话,如果foo在N处都被调用了,你就不得不去修改这N处的代码。或者更极端的,考虑其中某处调用的代码无法修改这个情况,比如:这个函数是你交给别人使用的。

1.3. 最大限度地少改动!

既然如此,我们就来想想办法不修改调用的代码;如果不修改调用代码,也就意味着调用foo()需要产生调用timeit(foo)的效果。我们可以想到将timeit赋值给foo,但是timeit似乎带有一个参数……想办法把参数统一吧!如果timeit(foo)不是直接产生调用效果,而是返回一个与foo参数列表一致的函数的话……就很好办了,将timeit(foo)的返回值赋值给foo,然后,调用foo()的代码完全不用修改!

代码如下:

#-*- coding: UTF-8 -*-
import time
 
def foo():
    print 'in foo()'
 
# 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法
def timeit(func):
    
    # 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装
    def wrapper():
        start = time.clock()
        func()
        end =time.clock()
        print 'used:', end - start
    
    # 将包装后的函数返回
    return wrapper
 
foo = timeit(foo)
foo()


这样,一个简易的计时器就做好了!我们只需要在定义foo以后调用foo之前,加上foo = timeit(foo),就可以达到计时的目的,这也就是装饰器的概念,看起来像是foo被timeit装饰了。在在这个例子中,函数进入和退出时需要计时,这被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。与传统编程习惯的从上往下执行方式相比较而言,像是在函数执行的流程中横向地插入了一段逻辑。在特定的业务领域里,能减少大量重复代码。面向切面编程还有相当多的术语,这里就不多做介绍,感兴趣的话可以去找找相关的资料。

这个例子仅用于演示,并没有考虑foo带有参数和有返回值的情况,完善它的重任就交给你了 :)

上面这段代码看起来似乎已经不能再精简了,Python于是提供了一个语法糖来降低字符输入量。

代码如下:

import time
 
def timeit(func):
    def wrapper():
        start = time.clock()
        func()
        end =time.clock()
        print 'used:', end - start
    return wrapper
 
@timeit
def foo():
    print 'in foo()'
 
foo()


重点关注第11行的@timeit,在定义上加上这一行与另外写foo = timeit(foo)完全等价,千万不要以为@有另外的魔力。除了字符输入少了一些,还有一个额外的好处:这样看上去更有装饰器的感觉。

要理解python的装饰器,我们首先必须明白在Python中函数也是被视为对象。这一点很重要。先看一个例子:

代码如下:

def shout(word="yes") :
    return word.capitalize()+" !"
 
print shout()
# 输出 : 'Yes !'
 
# 作为一个对象,你可以把函数赋给任何其他对象变量
 
scream = shout
 
# 注意我们没有使用圆括号,因为我们不是在调用函数
# 我们把函数shout赋给scream,也就是说你可以通过scream调用shout
 
print scream()
# 输出 : 'Yes !'
 
# 还有,你可以删除旧的名字shout,但是你仍然可以通过scream来访问该函数
 
del shout
try :
    print shout()
except NameError, e :
    print e
    #输出 : "name 'shout' is not defined"
 
print scream()
# 输出 : 'Yes !'


我们暂且把这个话题放旁边,我们先看看python另外一个很有意思的属性:可以在函数中定义函数:

代码如下:

def talk() :
 
    # 你可以在talk中定义另外一个函数
    def whisper(word="yes") :
        return word.lower()+"...";
 
    # ... 并且立马使用它
 
    print whisper()
 
# 你每次调用'talk',定义在talk里面的whisper同样也会被调用
talk()
# 输出 :
# yes...
 
# 但是"whisper" 不会单独存在:
 
try :
    print whisper()
except NameError, e :
    print e
    #输出 : "name 'whisper' is not defined"*


函数引用

从以上两个例子我们可以得出,函数既然作为一个对象,因此:

1. 其可以被赋给其他变量

2. 其可以被定义在另外一个函数内

这也就是说,函数可以返回一个函数,看下面的例子:

代码如下:

def getTalk(type="shout") :
 
    # 我们定义另外一个函数
    def shout(word="yes") :
        return word.capitalize()+" !"
 
    def whisper(word="yes") :
        return word.lower()+"...";
 
    # 然后我们返回其中一个
    if type == "shout" :
        # 我们没有使用(),因为我们不是在调用该函数
        # 我们是在返回该函数
        return shout
    else :
        return whisper
 
# 然后怎么使用呢 ?
 
# 把该函数赋予某个变量
talk = getTalk()    
 
# 这里你可以看到talk其实是一个函数对象:
print talk
#输出 :
 
# 该对象由函数返回的其中一个对象:
print talk()
 
# 或者你可以直接如下调用 :
print getTalk("whisper")()
#输出 : yes...


还有,既然可以返回一个函数,我们可以把它作为参数传递给函数:

代码如下:

def doSomethingBefore(func) :
    print "I do something before then I call the function you gave me"
    print func()
 
doSomethingBefore(scream)
#输出 :
#I do something before then I call the function you gave me
#Yes !


这里你已经足够能理解装饰器了,其他它可被视为封装器。也就是说,它能够让你在装饰前后执行代码而无须改变函数本身内容。

手工装饰

那么如何进行手动装饰呢?

代码如下:

# 装饰器是一个函数,而其参数为另外一个函数
def my_shiny_new_decorator(a_function_to_decorate) :
 
    # 在内部定义了另外一个函数:一个封装器。
    # 这个函数将原始函数进行封装,所以你可以在它之前或者之后执行一些代码
    def the_wrapper_around_the_original_function() :
 
        # 放一些你希望在真正函数执行前的一些代码
        print "Before the function runs"
 
        # 执行原始函数
        a_function_to_decorate()
 
        # 放一些你希望在原始函数执行后的一些代码
        print "After the function runs"
 
    #在此刻,"a_function_to_decrorate"还没有被执行,我们返回了创建的封装函数
    #封装器包含了函数以及其前后执行的代码,其已经准备完毕
    return the_wrapper_around_the_original_function
 
# 现在想象下,你创建了一个你永远也不远再次接触的函数
def a_stand_alone_function() :
    print "I am a stand alone function, don't you dare modify me"
 
a_stand_alone_function()
#输出: I am a stand alone function, don't you dare modify me
 
# 好了,你可以封装它实现行为的扩展。可以简单的把它丢给装饰器
# 装饰器将动态地把它和你要的代码封装起来,并且返回一个新的可用的函数。
a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function_decorated()
#输出 :
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs


现在你也许要求当每次调用a_stand_alone_function时,实际调用却是a_stand_alone_function_decorated。实现也很简单,可以用my_shiny_new_decorator来给a_stand_alone_function重新赋值。

代码如下:

a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function()
#输出 :
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs
 
# And guess what, that's EXACTLY what decorators do !


装饰器揭秘

前面的例子,我们可以使用装饰器的语法:

代码如下:

@my_shiny_new_decorator
def another_stand_alone_function() :
    print "Leave me alone"
 
another_stand_alone_function()
#输出 :
#Before the function runs
#Leave me alone
#After the function runs


当然你也可以累积装饰:

代码如下:

def bread(func) :
    def wrapper() :
        print "''''''\>"
        func()
        print ""
    return wrapper
 
def ingredients(func) :
    def wrapper() :
        print "#tomatoes#"
        func()
        print "~salad~"
    return wrapper
 
def sandwich(food="--ham--") :
    print food
 
sandwich()
#输出 : --ham--
sandwich = bread(ingredients(sandwich))
sandwich()
#outputs :
#''''''\>
# #tomatoes#
# --ham--
# ~salad~
#


使用python装饰器语法:

代码如下:

@bread
@ingredients
def sandwich(food="--ham--") :
    print food
 
sandwich()
#输出 :
#''''''\>
# #tomatoes#
# --ham--
# ~salad~
#


装饰器的顺序很重要,需要注意

代码如下:

@ingredients
@bread
def strange_sandwich(food="--ham--") :
    print food
 
strange_sandwich()
#输出 :
##tomatoes#
#''''''\>
# --ham--
#
# ~salad~


最后回答前面提到的问题:

代码如下:

# 装饰器makebold用于转换为粗体
def makebold(fn):
    # 结果返回该函数
    def wrapper():
        # 插入一些执行前后的代码
        return "" + fn() + ""
    return wrapper
 
# 装饰器makeitalic用于转换为斜体
def makeitalic(fn):
    # 结果返回该函数
    def wrapper():
        # 插入一些执行前后的代码
        return "" + fn() + ""
    return wrapper
 
@makebold
@makeitalic
def say():
    return "hello"
 
print say()
#输出: hello
 
# 等同于
def say():
    return "hello"
say = makebold(makeitalic(say))
 
print say()
#输出: hello


内置的装饰器

内置的装饰器有三个,分别是staticmethod、classmethod和property,作用分别是把类中定义的实例方法变成静态方法、类方法和类属性。由于模块里可以定义函数,所以静态方法和类方法的用处并不是太多,除非你想要完全的面向对象编程。而属性也不是不可或缺的,Java没有属性也一样活得很滋润。从我个人的Python经验来看,我没有使用过property,使用staticmethod和classmethod的频率也非常低。

代码如下:

class Rabbit(object):
    
    def __init__(self, name):
        self._name = name
    
    @staticmethod
    def newRabbit(name):
        return Rabbit(name)
    
    @classmethod
    def newRabbit2(cls):
        return Rabbit('')
    
    @property
    def name(self):
        return self._name


这里定义的属性是一个只读属性,如果需要可写,则需要再定义一个setter:

代码如下:

@name.setter
def name(self, name):
    self._name = name


functools模块

functools模块提供了两个装饰器。这个模块是Python 2.5后新增的,一般来说大家用的应该都高于这个版本。但我平时的工作环境是2.4 T-T

2.3.1. wraps(wrapped[, assigned][, updated]):
这是一个很有用的装饰器。看过前一篇反射的朋友应该知道,函数是有几个特殊属性比如函数名,在被装饰后,上例中的函数名foo会变成包装函数的名字wrapper,如果你希望使用反射,可能会导致意外的结果。这个装饰器可以解决这个问题,它能将装饰过的函数的特殊属性保留。

代码如下:

import time
import functools
 
def timeit(func):
    @functools.wraps(func)
    def wrapper():
        start = time.clock()
        func()
        end =time.clock()
        print 'used:', end - start
    return wrapper
 
@timeit
def foo():
    print 'in foo()'
 
foo()
print foo.__name__


首先注意第5行,如果注释这一行,foo.__name__将是'wrapper'。另外相信你也注意到了,这个装饰器竟然带有一个参数。实际上,他还有另外两个可选的参数,assigned中的属性名将使用赋值的方式替换,而updated中的属性名将使用update的方式合并,你可以通过查看functools的源代码获得它们的默认值。对于这个装饰器,相当于wrapper = functools.wraps(func)(wrapper)。

2.3.2. total_ordering(cls):
这个装饰器在特定的场合有一定用处,但是它是在Python 2.7后新增的。它的作用是为实现了至少__lt__、__le__、__gt__、__ge__其中一个的类加上其他的比较方法,这是一个类装饰器。如果觉得不好理解,不妨仔细看看这个装饰器的源代码:

代码如下:

def total_ordering(cls):
      """Class decorator that fills in missing ordering methods"""
      convert = {
          '__lt__': [('__gt__', lambda self, other: other                      ('__le__', lambda self, other: not other                      ('__ge__', lambda self, other: not self           '__le__': [('__ge__', lambda self, other: other                      ('__lt__', lambda self, other: not other                      ('__gt__', lambda self, other: not self           '__gt__': [('__lt__', lambda self, other: other > self),
                     ('__ge__', lambda self, other: not other > self),
                     ('__le__', lambda self, other: not self > other)],
          '__ge__': [('__le__', lambda self, other: other >= self),
                     ('__gt__', lambda self, other: not other >= self),
                     ('__lt__', lambda self, other: not self >= other)]
      }
      roots = set(dir(cls)) & set(convert)
      if not roots:
          raise ValueError('must define at least one ordering operation: =')
      root = max(roots)       # prefer __lt__ to __le__ to __gt__ to __ge__
      for opname, opfunc in convert[root]:
          if opname not in roots:
              opfunc.__name__ = opname
              opfunc.__doc__ = getattr(int, opname).__doc__
              setattr(cls, opname, opfunc)
      return cls

希望本文所述对大家的Python程序设计有所帮助。

관련 라벨:
원천:php.cn
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿