> 백엔드 개발 > 파이썬 튜토리얼 > 由Python运算π的值深入Python中科学计算的实现

由Python运算π的值深入Python中科学计算的实现

WBOY
풀어 주다: 2016-06-06 11:25:07
원래의
1701명이 탐색했습니다.

π是一个无数人追随的真正的神奇数字。我不是很清楚一个永远重复的无理数的迷人之处。在我看来,我乐于计算π,也就是计算π的值。因为π是一个无理数,它是无限的。这就意味着任何对π的计算都仅仅是个近似值。如果你计算100位,我可以计算101位并且更精确。迄今为止,有些人已经选拔出超级计算机来试图计算最精确的π。一些极值包括 计算π的5亿位。你甚至能从网上找到包含 π的一百亿位的文本文件(注意啦!下载这个文件可能得花一会儿时间,并且没法用你平时使用的记事本应用程序打开。)。对于我而言,如何用几行简单的Python来计算π才是我的兴趣所在。
你总是可以 使用 math.pi 变量的 。它被 包含在 标准库中, 在你试图自己 计算它之前,你应该去使用它 。 事实上 , 我们将 用它来计算 精度 。作为 开始, 让我们看 一个 非常直截了当的 计算Pi的 方法 。像往常一样,我将使用Python 2.7,同样的想法和代码可能应用于不同的版本。我们将要使用的大部分算法来自Pi WikiPedia page并加以实现。让我们看看下面的代码:
 

importsys
importmath
 
defmain(argv):
 
  iflen(argv) !=1:
    sys.exit('Usage: calc_pi.py <n>')
 
  print'\nComputing Pi v.01\n'
   
  a=1.0
  b=1.0/math.sqrt(2)
  t=1.0/4.0
  p=1.0
     
  foriinrange(int(sys.argv[1])):
    at=(a+b)/2
    bt=math.sqrt(a*b)
    tt=t-p*(a-at)**2
    pt=2*p
     
    a=at;b=bt;t=tt;p=pt
     
  my_pi=(a+b)**2/(4*t)
  accuracy=100*(math.pi-my_pi)/my_pi
     
  print"Pi is approximately: "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if__name__=="__main__":
  main(sys.argv[1:])
로그인 후 복사

这是个非常简单的脚本,你可以下载,运行,修改,和随意分享给别人。你能够看到类似下面的输出结果:

2015417113725870.png (347×591)

你会发现,尽管 n 大于4 ,我们逼近 Pi 精度却没有多大的提升。 我们可以猜到即使 n的值更大,同样的事情(pi的逼近精度没有提升)依旧会发生。幸运的是,有不止一种方法来揭开这个谜。使用 Python Decimal (十进制)库,我们可以就可以得到更高精度的值来逼近Pi。让我们来看看库函数是如何使用的。这个简化的版本,可以得到多于11位的数字 通常情况小Python 浮点数给出的精度。下面是Python Decimal 库中的一个例子 :

wpid-python_decimal_example-2013-05-28-12-54.png

로그인 후 복사

看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 简单点说,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾数,它不会影响任何计算。通过设置getcontext().prec 你可以的到你想要的位数 。我们试试。

2015417113806473.png (480×82)

看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 简单点说,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾数,它不会影响任何计算。通过设置getcontext().prec 你可以的到你想要的位数 。我们试试。

2015417113925777.png (321×52)

很好。 现在让我们 试着用这个 来 看看我们是否能 与我们以前的 代码 有更好的 逼近 。 现在, 我通常 是反对 使用“ from library import * ” , 但在这种情况下, 它会 使代码 看起来更漂亮 。

importsys
importmath
fromdecimalimport*
 
defmain(argv):
 
  iflen(argv) !=1:
    sys.exit('Usage: calc_pi.py <n>')
 
  print'\nComputing Pi v.01\n'
   
  a=Decimal(1.0)
  b=Decimal(1.0/math.sqrt(2))
  t=Decimal(1.0)/Decimal(4.0)
  p=Decimal(1.0)
     
  foriinrange(int(sys.argv[1])):
    at=Decimal((a+b)/2)
    bt=Decimal(math.sqrt(a*b))
    tt=Decimal(t-p*(a-at)**2)
    pt=Decimal(2*p)
     
    a=at;b=bt;t=tt;p=pt
     
  my_pi=(a+b)**2/(4*t)
  accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
     
  print"Pi is approximately: "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if__name__=="__main__":
  main(sys.argv[1:])
로그인 후 복사


输出结果:

2015417113950921.png (436×456)

好了。我们更准确了,但看起来似乎有一些舍入。从n = 100和n = 1000,我们有相同的精度。现在怎么办?好吧,现在我们来求助于公式。到目前为止,我们计算Pi的方式是通过对几部分加在一起。我从DAN 的关于Calculating Pi 的文章中发现一些代码。他建议我们用以下3个公式:

Bailey–Borwein–Plouffe 公式
Bellard的公式
Chudnovsky 算法

让我们从Bailey–Borwein–Plouffe 公式开始。它看起来是这个样子:

2015417114019059.png (437×47)

在代码中我们可以这样编写它:

import sys
import math
from decimal import *
 
def bbp(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6)))
    k+=1
  return pi
 
def main(argv):
 
    if len(argv) !=2:
    sys.exit('Usage: BaileyBorweinPlouffe.py <prec> <n>')
     
  getcontext().prec=(int(sys.argv[1]))
  my_pi=bbp(int(sys.argv[2]))
  accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
 
  print"Pi is approximately "+str(my_pi)
  print"Accuracy with math.pi: "+str(accuracy)
   
if __name__=="__main__":
  main(sys.argv[1:])
로그인 후 복사


抛开“ 包装”的代码,BBP(N)的功能是你真正想要的。你给它越大的N和给 getcontext().prec 设置越大的值,你就会使计算越精确。让我们看看一些代码结果:

2015417114048612.png (943×261)

这有许多数字位。你可以看出,我们并没有比以前更准确。所以我们需要前进到下一个公式,贝拉公式,希望能获得更好的精度。它看起来像这样:

2015417114133666.png (405×50)

我们将只改变我们的变换公式,其余的代码将保持不变。点击这里下载Python实现的贝拉公式。让我们看一看bellards(n):

def bellard(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1)+Decimal(1)/(10*k+9)-Decimal(64)/(10*k+3)-Decimal(32)/(4*k+1)-Decimal(4)/(10*k+5)-Decimal(4)/(10*k+7)-Decimal(1)/(4*k+3))
    k+=1
  pi=pi*1/(2**6)
  return pi

로그인 후 복사

2015417114158607.png (949×227)

哦,不,我们得到的是同样的精度。好吧,让我们试试第三个公式, Chudnovsky 算法,它看起来是这个样子:

2015417114248773.png (405×50)

再一次,让我们看一下这个计算公式(假设我们有一个阶乘公式)。 点击这里可下载用 python 实现的 Chudnovsky 公式。

下面是程序和输出结果:

def chudnovsky(n):
  pi=Decimal(0)
  k=0
  while k < n:
    pi+=(Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))*(13591409+545140134*k)/(640320**(3*k)))
    k+=1
  pi=pi*Decimal(10005).sqrt()/4270934400
  pi=pi**(-1)
  return pi
로그인 후 복사

2015417114314307.png (943×229)

    所以我们有了什么结论?花哨的算法不会使机器浮点世界达到更高标准。我真的很期待能有一个比我们用求和公式时所能得到的更好的精度。我猜那是过分的要求。如果你真的需要用PI,就只需使用math.pi变量了。然而,作为乐趣和测试你的计算机真的能有多快,你总是可以尝试第一个计算出Pi的百万位或者更多位是几。

관련 라벨:
원천:php.cn
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿