백엔드 개발 파이썬 튜토리얼 Hadoop中的Python框架的使用指南

Hadoop中的Python框架的使用指南

Jun 06, 2016 am 11:25 AM
python

Hadoop

 最近,我加入了Cloudera,在这之前,我在计算生物学/基因组学上已经工作了差不多10年。我的分析工作主要是利用Python语言和它很棒的科学计算栈来进行的。但Apache Hadoop的生态系统大部分都是用Java来实现的,也是为Java准备的,这让我很恼火。所以,我的头等大事变成了寻找一些Python可以用的Hadoop框架。

在这篇文章里,我会把我个人对这些框架的一些无关科学的看法写下来,这些框架包括:

  •     Hadoop流
  •     mrjob
  •     dumbo
  •     hadoopy
  •     pydoop
  •     其它

 

最终,在我的看来,Hadoop的数据流(streaming)是最快也是最透明的选项,而且最适合于文本处理。mrjob最适合于在Amazon EMR上快速工作,但是会有显著的性能损失。dumbo 对于大多数复杂的工作都很方便(对象作为键名(key)),但是仍然比数据流(streaming)要慢。

请继续往下阅读,以了解实现细节,性能以及功能的比较。


一个有趣的问题

为了测试不同的框架,我们不会做“统计词数”的实验,转而去转化谷歌图书N-元数据。 N-元代表一个n个词构成的元组。这个n-元数据集提供了谷歌图书文集中以年份分组的所有1-,2-,3-,4-,5-元记录的统计数目。 在这个n-元数据集中的每行记录都由三个域构成:n-元,年份,观测次数。(您能够在http://books.google.com/ngrams取得数据)。

我们希望去汇总数据以观测统计任何一对相互临近的词组合所出现的次数,并以年份分组。实验结果将使我们能够判断出是否有词组合在某一年中比正常情况出现的更为频繁。如果统计时,有两个词在四个词的距离内出现过,那么我们定义两个词是“临近”的。 或等价地,如果两个词在2-,3-或者5-元记录中出现过,那么我们也定义它们是”临近“的。 一次,实验的最终产物会包含一个2-元记录,年份和统计次数。

 


有一个微妙的地方必须强调。n-元数据集中每个数据的值都是通过整个谷歌图书语料库来计算的。从原理上来说,给定一个5-元数据集,我可以通过简单地聚合正确的n-元来计算出4-元、3-元和2-元数据集。例如,当5-元数据集包含
 

(the, cat, in, the, hat)    1999   20
(the, cat, is, on, youtube)  1999   13
(how, are, you, doing, today) 1986  5000
로그인 후 복사


时,我们可以将它聚合为2-元数据集以得出如下记录

(the, cat) 1999  33   // 也就是, 20 + 13
로그인 후 복사

然而,实际应用中,只有在整个语料库中出现了40次以上的n元组才会被统计进来。所以,如果某个5元组达不到40次的阈值,那么Google也提供组成这个5元组的2元组数据,这其中有一些或许能够达到阈值。出于这个原因,我们用相邻词的二元数据,隔一个词的三元组,隔两个词的四元组,以此类推。换句话说,与给定二元组相比,三元组多的只是最外层的词。除了对可能的稀疏n元数据更敏感,只用n元组最外层的词还有助于避免重复计算。总的来说,我们将在2元、3元、4元和5元数据集上进行计算。


MapReduce的伪代码来实现这个解决方案类似这样:



def map(record):
  (ngram, year, count) = unpack(record)
  // 确保word1为字典第一个字
  (word1, word2) = sorted(ngram[first], ngram[last])
  key = (word1, word2, year)
  emit(key, count)
 
def reduce(key, values):
  emit(key, sum(values))
로그인 후 복사


硬件

这些MapReduce组件在一个大约20GB的随机数据子集上执行。完整的数据集涵盖1500个文件;我们用这个脚本选取一个随机子集。文件名保持完整,这一点相当重要,因为文件名确定了数据块的n-元中n的值。

Hadoop集群包含5个使用CentOS 6.2 x64的虚拟节点,每个都有4个CPU,10GB RAM,100GB硬盘容量,并且运行CDH4。集群每次能够执行20个并行运算,每个组件能够执行10个减速器。

集群上运行的软件版本如下:

  Hadoop:2.0.0-cdh4.1.2
  Python:2.6.6
  mrjob:0.4-dev
  dumbo:0.21.36
  hadoopy:0.6.0
  pydoop:0.7(PyPI)库中包含最新版本
  java:1.6

로그인 후 복사


实现

大多数Python框架都封装了Hadoop Streaming,还有一些封装了Hadoop Pipes,也有些是基于自己的实现。下面我会分享一些我使用各种Python工具来写Hadoop jobs的经验,并会附上一份性能和特点的比较。我比较感兴趣的特点是易于上手和运行,我不会去优化某个单独的软件的性能。

在处理每一个数据集的时候,都会有一些损坏的记录。对于每一条记录,我们要检查是否有错并识别错误的种类,包括缺少字段以及错误的N元大小。对于后一种情况,我们必须知道记录所在的文件名以便确定该有的N元大小。

所有代码可以从 GitHub 获得。


Hadoop Streaming

Hadoop Streaming 提供了使用其他可执行程序来作为Hadoop的mapper或者reduce的方式,包括标准Unix工具和Python脚本。这个程序必须使用规定的语义从标准输入读取数据,然后将结果输出到标准输出。直接使用Streaming 的一个缺点是当reduce的输入是按key分组的时候,仍然是一行行迭代的,必须由用户来辨识key与key之间的界限。

下面是mapper的代码:

#! /usr/bin/env python
 
import os
import re
import sys
 
# determine value of n in the current block of ngrams by parsing the filename
input_file = os.environ['map_input_file']
expected_tokens = int(re.findall(r'([\d]+)gram', os.path.basename(input_file))[0])
 
for line in sys.stdin:
  data = line.split('\t')
 
  # perform some error checking
  if len(data) < 3:
    continue
 
  # unpack data
  ngram = data[0].split()
  year = data[1]
  count = data[2]
 
  # more error checking
  if len(ngram) != expected_tokens:
    continue
 
  # build key and emit
  pair = sorted([ngram[0], ngram[expected_tokens - 1]])
  print >>sys.stdout, "%s\t%s\t%s\t%s" % (pair[0], pair[1], year, count)
로그인 후 복사

下面是reducer:

#! /usr/bin/env python
 
import sys
 
total = 0
prev_key = False
for line in sys.stdin:
  data = line.split('\t')
  curr_key = '\t'.join(data[:3])
  count = int(data[3])
 
  # found a boundary; emit current sum
  if prev_key and curr_key != prev_key:
    print >>sys.stdout, "%s\t%i" % (prev_key, total)
    prev_key = curr_key
    total = count
  # same key; accumulate sum
  else:
    prev_key = curr_key
    total += count
 
# emit last key
if prev_key:
  print >>sys.stdout, "%s\t%i" % (prev_key, total)
로그인 후 복사

Hadoop流(Streaming)默认用一个tab字符分割健(key)和值(value)。因为我们也用tab字符分割了各个域(field),所以我们必须通过传递给Hadoop下面三个选项来告诉它我们数据的健(key)由前三个域构成。

-jobconf stream.num.map.output.key.fields=3
-jobconf stream.num.reduce.output.key.fields=3
로그인 후 복사

要执行Hadoop任务命令

hadoop jar /usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.1.2.jar \
    -input /ngrams \
    -output /output-streaming \
    -mapper mapper.py \
    -combiner reducer.py \
    -reducer reducer.py \
    -jobconf stream.num.map.output.key.fields=3 \
    -jobconf stream.num.reduce.output.key.fields=3 \
    -jobconf mapred.reduce.tasks=10 \
    -file mapper.py \
    -file reducer.py
로그인 후 복사

注意,mapper.py和reducer.py在命令中出现了两次,第一次是告诉Hadoop要执行着两个文件,第二次是告诉Hadoop把这两个文件分发给集群的所有节点。

Hadoop Streaming 的底层机制很简单清晰。与此相反,Python以一种不透明的方式执行他们自己的序列化/反序列化,而这要消耗更多的资源。 而且,如果Hadoop软件已经存在,Streaming就能运行,而不需要再在上面配置其他的软件。更不用说还能传递Unix 命令或者Java类名称作 mappers/reducers了。

Streaming缺点是必须要手工操作。用户必须自己决定如何将对象转化为为成键值对(比如JSON 对象)。对于二进制数据的支持也不好。而且如上面说过的,必须在reducer手工监控key的边界,这很容易出错。

mrjob

mrjob是一个开放源码的Python框架,封装Hadoop的数据流,并积极开发Yelp的。由于Yelp的运作完全在亚马逊网络服务,mrjob的整合与EMR是令人难以置信的光滑和容易(使用 boto包)。

mrjob提供了一个Python的API与Hadoop的数据流,并允许用户使用任何对象作为键和映射器。默认情况下,这些对象被序列化为JSON对象的内部,但也有支持pickle的对象。有没有其他的二进制I / O格式的开箱即用,但有一个机制来实现自定义序列化。

值得注意的是,mrjob似乎发展的非常快,并有很好的文档。

所有的Python框架,看起来像伪代码实现:

#! /usr/bin/env python
 
import os
import re
 
from mrjob.job import MRJob
from mrjob.protocol import RawProtocol, ReprProtocol
 
class NgramNeighbors(MRJob):
 
  # mrjob allows you to specify input/intermediate/output serialization
  # default output protocol is JSON; here we set it to text
  OUTPUT_PROTOCOL = RawProtocol
 
  def mapper_init(self):
    # determine value of n in the current block of ngrams by parsing filename
    input_file = os.environ['map_input_file']
    self.expected_tokens = int(re.findall(r'([\d]+)gram', os.path.basename(input_file))[0])
 
  def mapper(self, key, line):
    data = line.split('\t')
 
    # error checking
    if len(data) < 3:
      return
 
    # unpack data
    ngram = data[0].split()
    year = data[1]
    count = int(data[2])
 
    # more error checking
    if len(ngram) != self.expected_tokens:
      return
 
    # generate key
    pair = sorted([ngram[0], ngram[self.expected_tokens - 1]])
    k = pair + [year]
 
    # note that the key is an object (a list in this case)
    # that mrjob will serialize as JSON text
    yield (k, count)
 
  def combiner(self, key, counts):
    # the combiner must be separate from the reducer because the input
    # and output must both be JSON
    yield (key, sum(counts))
 
  def reducer(self, key, counts):
    # the final output is encoded as text
    yield "%s\t%s\t%s" % tuple(key), str(sum(counts))
 
if __name__ == '__main__':
  # sets up a runner, based on command line options
  NgramNeighbors.run()
로그인 후 복사

mrjob只需要安装在客户机上,其中在作业的时候提交。下面是要运行的命令:

export HADOOP_HOME="/usr/lib/hadoop-0.20-mapreduce"
./ngrams.py -r hadoop --hadoop-bin /usr/bin/hadoop --jobconf mapred.reduce.tasks=10 -o hdfs:///output-mrjob hdfs:///ngrams
로그인 후 복사


编写MapReduce的工作是非常直观和简单的。然而,有一个重大的内部序列化计划所产生的成本。最有可能的二进制计划将需要实现的用户(例如,为了支持typedbytes)。也有一些内置的实用程序日志文件的解析。最后,mrjob允许用户写多步骤的MapReduce的工作流程,在那里从一个MapReduce作业的中间输出被自动用作输入到另一个MapReduce工作。

(注:其余的实现都非常相似,除了包具体的实现,他们都能被找到here.。)

dumbo

dumbo 是另外一个使用Hadoop流包装的框架。dumbo出现的较早,本应该被许多人使用,但由于缺少文档,造成开发困难。这也是不如mcjob的一点。

dumbo通过typedbytes执行序列化,能允许更简洁的数据传输,也可以更自然的通过指定JavaInputFormat读取SequenceFiles或者其他格式的文件,比如,dumbo也可以执行Python的egg和Java的JAR文件。


在我的印象中, 我必须要手动安装dumbo中的每一个节点, 它只有在typedbytes和dumbo以eggs形式创建的时候才能运行。 就像他会因为onMemoryErrors终止一样,他也会因为使用组合器停止。

运行dumbo任务的代码是:

dumbo start ngrams.py \
    -hadoop /usr \
    -hadooplib /usr/lib/hadoop-0.20-mapreduce/contrib/streaming \
    -numreducetasks 10 \
    -input hdfs:///ngrams \
    -output hdfs:///output-dumbo \
    -outputformat text \
    -inputformat text

로그인 후 복사


hadoopy

hadoopy 是另外一个兼容dumbo的Streaming封装。同样,它也使用typedbytes序列化数据,并直接把 typedbytes 数据写到HDFS。

它有一个很棒的调试机制, 在这种机制下它可以直接把消息写到标准输出而不会干扰Streaming过程。它和dumbo很相似,但文档要好得多。文档中还提供了与 Apache HBase整合的内容。

用hadoopy的时候有两种发发来启动jobs:

  • launch 需要每个节点都已经安装了Python/hadoopy ,但是在这之后的负载就小了。
  • launch_frozen 不要求节点上已经安装了Python,它会在运行的时候安装,但这会带来15秒左右的额外时间消耗(据说通过某些优化和缓存技巧能够缩短这个时间)。

必须在Python程序中启动hadoopy job,它没有内置的命令行工具。

我写了一个脚本通过launch_frozen的方式启动hadoopy

python launch_hadoopy.py

로그인 후 복사

用launch_frozen运行之后,我在每个节点上都安装了hadoopy然后用launch方法又运行了一遍,性能明显好得多。


pydoop

与其他框架相比,pydoop 封装了Hadoop的管道(Pipes),这是Hadoop的C++ API。 正因为此,该项目声称他们能够提供更加丰富的Hadoop和HDFS接口,以及一样好的性能。我没有验证这个。但是,有一个好处是可以用Python实现一个Partitioner,RecordReader以及RecordWriter。所有的输入输出都必须是字符串。

最重要的是,我不能成功的从PIP或者源代码构建pydoop。

其他

  • happy 是一个用Jython来写Hadoop job的框架,但是似乎已经挂了
  • Disco 成熟的,非Hadoop 的 MapReduce.实现,它的核心使用Erlang写的,提供了Python的API,它由诺基亚开发,不如Hadoop应用广泛。
  • octopy 是一个纯Python的MapReduce实现,它只有一个源文件,并不适于“真正的”计算。
  • Mortar是另一个Python选择,它不久前才发布,用户可以通过一个网页应用提交Apache Pig 或者 Python jobs 处理放置在 Amazon S3上的数据。
  • 有一些更高层次的Hadoop生态体系中的接口,像 Apache Hive和Pig。Pig 可以让用户用Python来写自定义的功能,是通过Jython来运行。 Hive 也有一个Python封装叫做hipy。
  • (Added Jan. 7 2013) Luigi 是一个用于管理多步作业流程的Python框架。它与Apache Oozie 有一点相似,但是它内置封装了Hadoop Streaming(轻量级的封装)。Luigi有一个非常好的功能是能够在job出错的时候抛出Python代码的错误堆栈,而且它的命令行界面也非常棒。它的README文件内容很多,但是却缺少详尽的参考文档。Luigi 由Spotify 开发并在其内部广泛使用。


本地java

最后,我使用新的Hadoop Java API接口实施了MR任务,编译完成后,这样来运行它:

hadoop jar /root/ngrams/native/target/NgramsComparison-0.0.1-SNAPSHOT.jar NgramsDriver hdfs:///ngrams hdfs:///output-native
로그인 후 복사


关于计数器的特别说明

在我的MR jobs的最初实现里,我用计数器来跟踪监控不良记录。在Streaming里,需要把信息写到stderr。事实证明这会带来不容忽视的额外开销:Streaming job花的时间是原生java job的3.4倍。这个框架同样有此问题。


将用Java实现的MapReduce job作为性能基准。 Python框架的值是其相对于Java的性能指标的比率。 

2015422114844368.png (807×266)

 Java明显最快,,Streaming要多花一半时间,Python框架花的时间更多。从mrjob mapper的profile数据来看,它在序列化/反序列化上花费了大量时间。dumbo和hadoopy在这方面要好一点。如果用了combiner 的话dumbo 还可以更快。

特点比较

大多来自各自软件包中的文档以及代码库。

2015422114912983.png (1190×483)

结论

Streaming是最快的Python方案,这面面没有任何魔力。但是在用它来实现reduce逻辑的时候,以及有很多复杂对象的时候要特别小心。

所有的Python框架看起来都像是伪码,这非常棒。

mrjob更新快,成熟的易用,用它来组织多步MapReduce的工作流很容易,还可以方便地使用复杂对象。它还可以无缝使用EMR。但是它也是执行速度最慢的。

 

还有一些不是很流行的 Python 框架,他们的主要优势是内置了对于二进制格式的支持,但如果有必要话,这个完全可以由用户代码来自己实现。

就目前来看:

  •     Hadoop Streaming是一般情况下的最佳选择,只要在使用reducer的时候多加小心,它还是很简单易用的。
  •     从计算开销方面考虑的话,选择mrjob,因为它与Amazon EMR结合最好。
  •     如果应用比较复杂,包含了复合键,要组合多步流程,dumbo 最合适。它比Streaming慢,但是比mrjob快。

如果你在实践中有自己的认识,或是发现本文有错误,请在回复里提出。

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP와 Python : 다른 패러다임이 설명되었습니다 PHP와 Python : 다른 패러다임이 설명되었습니다 Apr 18, 2025 am 12:26 AM

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP와 Python 중에서 선택 : 가이드 PHP와 Python 중에서 선택 : 가이드 Apr 18, 2025 am 12:24 AM

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Apr 15, 2025 pm 08:18 PM

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

Windows 8에서 코드를 실행할 수 있습니다 Windows 8에서 코드를 실행할 수 있습니다 Apr 15, 2025 pm 07:24 PM

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

VScode 확장자가 악의적입니까? VScode 확장자가 악의적입니까? Apr 15, 2025 pm 07:57 PM

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

Python vs. JavaScript : 학습 곡선 및 사용 편의성 Python vs. JavaScript : 학습 곡선 및 사용 편의성 Apr 16, 2025 am 12:12 AM

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

PHP와 Python : 그들의 역사에 깊은 다이빙 PHP와 Python : 그들의 역사에 깊은 다이빙 Apr 18, 2025 am 12:25 AM

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

터미널 VSCODE에서 프로그램을 실행하는 방법 터미널 VSCODE에서 프로그램을 실행하는 방법 Apr 15, 2025 pm 06:42 PM

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

See all articles