python解析html开发库pyquery使用方法
例如
代码如下:
导演: 汤姆·提克威 / 拉娜·沃卓斯基 / 安迪·沃卓斯基
编剧: 汤姆·提克威 / 安迪·沃卓斯基 / 拉娜·沃卓斯基
主演: 汤姆·汉克斯 / 哈莉·贝瑞 / 吉姆·布劳德本特 / 雨果·维文 / 吉姆·斯特吉斯 / 裴斗娜 / 本·卫肖 / 詹姆斯·达西 / 周迅 / 凯斯·大卫 / 大卫·吉雅西 / 苏珊·萨兰登 / 休·格兰特
类型: 剧情 / 科幻 / 悬疑
官方网站: cloudatlas.warnerbros.com
制片国家/地区: 德国 / 美国 / 香港 / 新加坡
语言: 英语
上映日期: 2013-01-31(中国大陆) / 2012-10-26(美国)
片长: 134分钟(中国大陆) / 172分钟(美国)
IMDb链接: tt1371111
官方小站:
电影《云图》
代码如下:
from pyquery import PyQuery as pq
doc=pq(url='http://movie.douban.com/subject/3530403/')
data=doc('.pl')
for i in data:
print pq(i).text()
输出
代码如下:
导演
编剧
主演
类型:
官方网站:
制片国家/地区:
语言:
上映日期:
片长:
IMDb链接:
官方小站:
用法
用户可以使用PyQuery类从字符串、lxml对象、文件或者url来加载xml文档:
代码如下:
>>> from pyquery import PyQuery as pq
>>> from lxml import etree
>>> doc=pq("")
>>> doc=pq(etree.fromstring(""))
>>> doc=pq(filename=path_to_html_file)
>>> doc=pq(url='http://movie.douban.com/subject/3530403/')
可以像jQuery一样选择对象了
代码如下:
>>> doc('.pl')
[
这样,class为'pl'的对象就全部选择出来了。
不过在使用迭代时需要对文本进行重新封装:
代码如下:
for para in doc('.pl'):
para=pq(para)
print para.text()
导演
编剧
主演
类型:
官方网站:
制片国家/地区:
语言:
上映日期:
片长:
IMDb链接:
官方小站:
这里得到的text是unicode码,如果要写入文件需要编码为字符串。
用户可以使用jquery提供的一些伪类(但还不支持css)来进行操作,诸如:
代码如下:
>>> doc('.pl:first')
[
>>> print doc('.pl:first').text()
导演
Attributes
获取html元素的属性
代码如下:
>>> p=pq('
>>> p.attr('id')
'hello'
>>> p.attr.id
'hello'
>>> p.attr['id']
'hello'
赋值
代码如下:
>>> p.attr.id='plop'
>>> p.attr.id
'plop'
>>> p.attr['id']='ola'
>>> p.attr.id
'ola'
>>> p.attr(id='hello',class_='hello2')
[
]
Traversing
过滤
代码如下:
>>> d=pq('
>>> d('p').filter('.hello')
[
]
>>> d('p').filter('#test')
[
]
>>> d('p').filter(lambda i:i==1)
[
]
>>> d('p').filter(lambda i:i==0)
[
]
>>> d('p').filter(lambda i:pq(this).text()=='hello')
[
]
按照顺序选择
代码如下:
>>> d('p').eq(0)
[
]
>>> d('p').eq(1)
[
]
选择内嵌元素
代码如下:
>>> d('p').eq(1).find('a')
[]
选择父元素
代码如下:
>>> d=pq('
Whoah!
there
')>>> d('p').eq(1).find('em')
[]
>>> d('p').eq(1).find('em').end()
[
]
>>> d('p').eq(1).find('em').end().text()
'there'
>>> d('p').eq(1).find('em').end().end()
[
,
]

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서
