Python使用PyGreSQL操作PostgreSQL数据库教程
PostgreSQL是一款功能强大的开源关系型数据库,本文使用python实现了对开源数据库PostgreSQL的常用操作,其开发过程简介如下:
一、环境信息:
1、操作系统:
RedHat Enterprise Linux 4
Windows XP SP2
2、数据库:
PostgreSQL8.3
3、 开发工具:
Eclipse+Pydev+python2.6+PyGreSQL(提供pg模块)
4、说明:
a、PostgreSQL数据库运行于RedHat Linux上,Windows下也要安装pgAdmin(访问PostgreSQL服务器的客户端)。
b、PyGreSQL(即pg)模块下载路径及API手册:http://www.pygresql.org/
PyGreSQL模块点此本站下载
二、配置:
1、将pgAdmin安装路径下以下子目录添加到系统环境变量中:
E:\Program Files\PostgreSQL\8.3\lib
E:\Program Files\PostgreSQL\8.3\bin
2、将python安装目录C:\Python26\Lib\site-packages\pywin32_system32下的dll文件拷贝到C:\WINDOWS\system32
3、说明:如果跳过以上两步,在import pg时将会报错,并且会浪费较长时间才能搞定。
三、程序实现:
#!/usr/bin/env python # -*- coding: utf-8 -*- #导入日志及pg模块 import logging import logging.config import pg #日志配置文件名 LOG_FILENAME = 'logging.conf' #日志语句提示信息 LOG_CONTENT_NAME = 'pg_log' def log_init(log_config_filename, logname): ''' Function:日志模块初始化函数 Input:log_config_filename:日志配置文件名 lognmae:每条日志前的提示语句 Output: logger author: socrates date:2012-02-12 ''' logging.config.fileConfig(log_config_filename) logger = logging.getLogger(logname) return logger def operate_postgre_tbl_product(): ''' Function:操作pg数据库函数 Input:NONE Output: NONE author: socrates date:2012-02-12 ''' pgdb_logger.debug("operate_postgre_tbl_product enter...") #连接数据库 try: pgdb_conn = pg.connect(dbname = 'kevin_test', host = '192.168.230.128', user = 'dyx1024', passwd = '888888') except Exception, e: print e.args[0] pgdb_logger.error("conntect postgre database failed, ret = %s" % e.args[0]) return pgdb_logger.info("conntect postgre database(kevin_test) succ.") #删除表 sql_desc = "DROP TABLE IF EXISTS tbl_product3;" try: pgdb_conn.query(sql_desc) except Exception, e: print 'drop table failed' pgdb_logger.error("drop table failed, ret = %s" % e.args[0]) pgdb_conn.close() return pgdb_logger.info("drop table(tbl_product3) succ.") #创建表 sql_desc = '''CREATE TABLE tbl_product3( i_index INTEGER, sv_productname VARCHAR(32) );''' try: pgdb_conn.query(sql_desc) except Exception, e: print 'create table failed' pgdb_logger.error("create table failed, ret = %s" % e.args[0]) pgdb_conn.close() return pgdb_logger.info("create table(tbl_product3) succ.") #插入记录 sql_desc = "INSERT INTO tbl_product3(sv_productname) values('apple')" try: pgdb_conn.query(sql_desc) except Exception, e: print 'insert record into table failed' pgdb_logger.error("insert record into table failed, ret = %s" % e.args[0]) pgdb_conn.close() return pgdb_logger.info("insert record into table(tbl_product3) succ.") #查询表 1 sql_desc = "select * from tbl_product3" for row in pgdb_conn.query(sql_desc).dictresult(): print row pgdb_logger.info("%s", row) #查询表2 sql_desc = "select * from tbl_test_port" for row in pgdb_conn.query(sql_desc).dictresult(): print row pgdb_logger.info("%s", row) #关闭数据库连接 pgdb_conn.close() pgdb_logger.debug("operate_sqlite3_tbl_product leaving...") if __name__ == '__main__': #初始化日志系统 pgdb_logger = log_init(LOG_FILENAME, LOG_CONTENT_NAME) #操作数据库 operate_postgre_tbl_product()
四、测试:
1、运行后命令行打印结果:
{'sv_productname': 'apple', 'i_index': None} {'i_status': 1, 'i_port': 2, 'i_index': 1} {'i_status': 1, 'i_port': 3, 'i_index': 2} {'i_status': 1, 'i_port': 5, 'i_index': 3} {'i_status': 1, 'i_port': 0, 'i_index': 5} {'i_status': 1, 'i_port': 18, 'i_index': 7} {'i_status': 1, 'i_port': 8, 'i_index': 8} {'i_status': 1, 'i_port': 7, 'i_index': 9} {'i_status': 1, 'i_port': 21, 'i_index': 10} {'i_status': 1, 'i_port': 23, 'i_index': 11} {'i_status': 1, 'i_port': 29, 'i_index': 12} {'i_status': 1, 'i_port': 3000, 'i_index': 4} {'i_status': 1, 'i_port': 1999, 'i_index': 6}
2、日志文件内容:
[2012-02-12 18:09:53,536 pg_log]DEBUG: operate_postgre_tbl_product enter... (test_func.py:36) [2012-02-12 18:09:53,772 pg_log]INFO: conntect postgre database(kevin_test) succ. (test_func.py:46) [2012-02-12 18:09:53,786 pg_log]INFO: drop table(tbl_product3) succ. (test_func.py:58) [2012-02-12 18:09:53,802 pg_log]INFO: create table(tbl_product3) succ. (test_func.py:73) [2012-02-12 18:09:53,802 pg_log]INFO: insert record into table(tbl_product3) succ. (test_func.py:85) [2012-02-12 18:09:53,802 pg_log]INFO: {'sv_productname': 'apple', 'i_index': None} (test_func.py:91) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 2, 'i_index': 1} (test_func.py:97) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 3, 'i_index': 2} (test_func.py:97) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 5, 'i_index': 3} (test_func.py:97) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 0, 'i_index': 5} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 18, 'i_index': 7} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 8, 'i_index': 8} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 7, 'i_index': 9} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 21, 'i_index': 10} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 23, 'i_index': 11} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 29, 'i_index': 12} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 3000, 'i_index': 4} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 1999, 'i_index': 6} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]DEBUG: operate_sqlite3_tbl_product leaving... (test_func.py:101)
3、psql查看结果:
[root@kevin ~]# su - postgres [postgres@kevin ~]$ psql -U dyx1024 -d kevin_test psql (8.4.2) Type "help" for help. kevin_test=# \dt List of relations Schema | Name | Type | Owner --------+---------------+-------+---------------- public | tbl_product3 | table | dyx1024 public | tbl_test_port | table | pg_test_user_3 (2 rows) kevin_test=# select * from tbl_product3; i_index | sv_productname ---------+---------------- | apple (1 row) kevin_test=# select * from tbl_test_port; i_index | i_port | i_status ---------+--------+---------- 1 | 2 | 1 2 | 3 | 1 3 | 5 | 1 5 | 0 | 1 7 | 18 | 1 8 | 8 | 1 9 | 7 | 1 10 | 21 | 1 11 | 23 | 1 12 | 29 | 1 4 | 3000 | 1 6 | 1999 | 1 (12 rows) kevin_test=# \q [postgres@kevin ~]$

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











MySQL에는 무료 커뮤니티 버전과 유료 엔터프라이즈 버전이 있습니다. 커뮤니티 버전은 무료로 사용 및 수정할 수 있지만 지원은 제한되어 있으며 안정성이 낮은 응용 프로그램에 적합하며 기술 기능이 강합니다. Enterprise Edition은 안정적이고 신뢰할 수있는 고성능 데이터베이스가 필요하고 지원 비용을 기꺼이 지불하는 응용 프로그램에 대한 포괄적 인 상업적 지원을 제공합니다. 버전을 선택할 때 고려 된 요소에는 응용 프로그램 중요도, 예산 책정 및 기술 기술이 포함됩니다. 완벽한 옵션은없고 가장 적합한 옵션 만 있으므로 특정 상황에 따라 신중하게 선택해야합니다.

이 기사는 MySQL 데이터베이스의 작동을 소개합니다. 먼저 MySQLworkBench 또는 명령 줄 클라이언트와 같은 MySQL 클라이언트를 설치해야합니다. 1. MySQL-Uroot-P 명령을 사용하여 서버에 연결하고 루트 계정 암호로 로그인하십시오. 2. CreateABase를 사용하여 데이터베이스를 작성하고 데이터베이스를 선택하십시오. 3. CreateTable을 사용하여 테이블을 만들고 필드 및 데이터 유형을 정의하십시오. 4. InsertInto를 사용하여 데이터를 삽입하고 데이터를 쿼리하고 업데이트를 통해 데이터를 업데이트하고 DELETE를 통해 데이터를 삭제하십시오. 이러한 단계를 마스터하고 일반적인 문제를 처리하는 법을 배우고 데이터베이스 성능을 최적화하면 MySQL을 효율적으로 사용할 수 있습니다.

MySQL 설치 실패의 주된 이유는 다음과 같습니다. 1. 권한 문제, 관리자로 실행하거나 Sudo 명령을 사용해야합니다. 2. 종속성이 누락되었으며 관련 개발 패키지를 설치해야합니다. 3. 포트 충돌, 포트 3306을 차지하는 프로그램을 닫거나 구성 파일을 수정해야합니다. 4. 설치 패키지가 손상되어 무결성을 다운로드하여 확인해야합니다. 5. 환경 변수가 잘못 구성되었으며 운영 체제에 따라 환경 변수를 올바르게 구성해야합니다. 이러한 문제를 해결하고 각 단계를 신중하게 확인하여 MySQL을 성공적으로 설치하십시오.

MySQL 다운로드 파일은 손상되었습니다. 어떻게해야합니까? 아아, mySQL을 다운로드하면 파일 손상을 만날 수 있습니다. 요즘 정말 쉽지 않습니다! 이 기사는 모든 사람이 우회를 피할 수 있도록이 문제를 해결하는 방법에 대해 이야기합니다. 읽은 후 손상된 MySQL 설치 패키지를 복구 할 수있을뿐만 아니라 향후에 갇히지 않도록 다운로드 및 설치 프로세스에 대해 더 깊이 이해할 수 있습니다. 파일 다운로드가 손상된 이유에 대해 먼저 이야기합시다. 이에 대한 많은 이유가 있습니다. 네트워크 문제는 범인입니다. 네트워크의 다운로드 프로세스 및 불안정성의 중단으로 인해 파일 손상이 발생할 수 있습니다. 다운로드 소스 자체에도 문제가 있습니다. 서버 파일 자체가 고장 났으며 물론 다운로드하면 고장됩니다. 또한 일부 안티 바이러스 소프트웨어의 과도한 "열정적 인"스캔으로 인해 파일 손상이 발생할 수 있습니다. 진단 문제 : 파일이 실제로 손상되었는지 확인하십시오

MySQL 데이터베이스 성능 최적화 안내서 리소스 집약적 응용 프로그램에서 MySQL 데이터베이스는 중요한 역할을 수행하며 대규모 트랜잭션 관리를 담당합니다. 그러나 응용 프로그램 규모가 확장됨에 따라 데이터베이스 성능 병목 현상은 종종 제약이됩니다. 이 기사는 일련의 효과적인 MySQL 성능 최적화 전략을 탐색하여 응용 프로그램이 고 부하에서 효율적이고 반응이 유지되도록합니다. 실제 사례를 결합하여 인덱싱, 쿼리 최적화, 데이터베이스 설계 및 캐싱과 같은 심층적 인 주요 기술을 설명합니다. 1. 데이터베이스 아키텍처 설계 및 최적화 된 데이터베이스 아키텍처는 MySQL 성능 최적화의 초석입니다. 몇 가지 핵심 원칙은 다음과 같습니다. 올바른 데이터 유형을 선택하고 요구 사항을 충족하는 가장 작은 데이터 유형을 선택하면 저장 공간을 절약 할 수있을뿐만 아니라 데이터 처리 속도를 향상시킬 수 있습니다.

MySQL 성능 최적화는 설치 구성, 인덱싱 및 쿼리 최적화, 모니터링 및 튜닝의 세 가지 측면에서 시작해야합니다. 1. 설치 후 innodb_buffer_pool_size 매개 변수와 같은 서버 구성에 따라 my.cnf 파일을 조정해야합니다. 2. 과도한 인덱스를 피하기 위해 적절한 색인을 작성하고 Execution 명령을 사용하여 실행 계획을 분석하는 것과 같은 쿼리 문을 최적화합니다. 3. MySQL의 자체 모니터링 도구 (showprocesslist, showstatus)를 사용하여 데이터베이스 건강을 모니터링하고 정기적으로 백업 및 데이터베이스를 구성하십시오. 이러한 단계를 지속적으로 최적화함으로써 MySQL 데이터베이스의 성능을 향상시킬 수 있습니다.

MySQL은 기본 데이터 저장 및 관리를위한 네트워크 연결없이 실행할 수 있습니다. 그러나 다른 시스템과의 상호 작용, 원격 액세스 또는 복제 및 클러스터링과 같은 고급 기능을 사용하려면 네트워크 연결이 필요합니다. 또한 보안 측정 (예 : 방화벽), 성능 최적화 (올바른 네트워크 연결 선택) 및 데이터 백업은 인터넷에 연결하는 데 중요합니다.

해시 값으로 저장되기 때문에 MongoDB 비밀번호를 Navicat을 통해 직접 보는 것은 불가능합니다. 분실 된 비밀번호 검색 방법 : 1. 비밀번호 재설정; 2. 구성 파일 확인 (해시 값이 포함될 수 있음); 3. 코드를 점검하십시오 (암호 하드 코드 메일).
