初学python和机器学习,想知道怎样才能达到自己独立编写程序的能力?
我正在学习python。以前大学学过一点C.但是只能应付考试的水平。现在从事零售业,但是确实太热爱计算机和编程。买了一本python学习手册和一本python核心编程在看。但是把字符串,字典,列表看完以后感觉很困惑。因为虽然上面的习题都能做,但是不知道怎样用这些来构建一个程序很多代码和函数定义都一知半解,即使明白算法的运作原理但是却无法独立不看书写出属于自己的代码。只能单纯照着书上的代码写。我想知道怎样才能将这些知识转变成能够自己写出属于自己的代码的能力。我想以后从事机器学习或者数据挖掘的工作。
回复内容:
先把Python练好,第一遍过完教程之后,可以从生活中拿一些小需求来练手,找一些别人的代码看看,尝试重写一遍。知乎上相关的问题可以关注一下:Python 有哪些一千行左右的经典练手项目? - 编程
你是如何自学 Python 的? - 调查类问题
Python 的练手项目有哪些值得推荐? - 编程
在学Python期间,可以看看机器学习或数据挖掘的书,比如:
在数据分析、挖掘方面,有哪些好书值得推荐? - 书籍推荐
如何系统地学习数据挖掘? - 数据挖掘
然后慢慢试着实现一些算法,参加阿里的天池比赛或kaggle练练手,就算入门了吧,再想办法找个相关的工作,慢慢的就能进入大道了 有部分从事机器学习,科学计算的研究生,编程不大会,直接上python 第三方库,硬写代码,会碰到很多困难,建议补补基础知识。
自己能不能写代码解决问题,是衡量有没有学会编程的方法。
建议不能只学语法,需要学习计算思维,编程思路,解决问题的方法。
请看黄哥本人写的文章
如何捅破python编程的那层纸
article/pythonstudy.md at master · pythonpeixun/article · GitHub
剪刀石头布小习题三种语言python2、php、go代码
article/jdstb.md at master · pythonpeixun/article · GitHub
一段小代码说明@property装饰器的用法
一段小代码说明@property装饰器的用法
如何捅破python编程的那层纸之二
如何捅破python编程的那层纸之二
如何捅破python编程的那层纸之三
如何捅破python编程的那层纸之三
黄哥python远程视频培训班
article/index.md at master · pythonpeixun/article · GitHub
黄哥python培训试看视频播放地址
article/python_shiping.md at master · pythonpeixun/article · GitHub 推荐给你一本书《集体智慧编程》。
里面所有的例子都是用python写的,由浅入深,不要看一遍就过,把所有的代码敲一遍,你会从中学到很多东西。
相对于python,这本书给我的感觉更像是你需要的那种思想,利用编程解决问题的那种思想。
最后说一句,在你成长的过程中或许会受到质疑,不要去理会,做自己想做的事,你的成功就是消灭质疑最有力的武器。
加油 不是打击你自信心
在中国,想做机器学习这一行的,基本都要研究生
而且你都工作了,只能社招,阿里大数据竞赛可能你就参加不了
面试时候,面试官问你个快速排序,二叉树什么的,估计你就写不出来
面试官再问你,操作系统啊,计算机网络啊,海量数据啊等等知识,你觉得你该怎么应对呢
既然是机器学习,起码面试时候会来几个推导一下机器学习数学过程吧,然后再扯一点统计学概率论什么的,再问几个C++或者Java知识也不为过吧,然后再聊聊现在很热的Hadoop/Spark/Storm等等
如果你想去小公司做数据挖掘机器学习当我没说(但是小公司去做机器学习基本直接从大公司挖人过来的),想去中等或者大公司的话,我觉得除非你在KDD或者Kaggle上做出很好的成绩了,否则,还是准备考研把,或者就平时想想就算了吧(毕竟全中国在做和数据挖掘相关岗位的人也不多,岗位需求也不大)
最后建议,真的很喜欢Python和机器学习的话,去做个数据运营挺不错的 用python写一写机器学习实战里面的代码,了解一些简单的聚类分类算法原理,能写kmeans,朴素贝叶斯啥的就行了,因为这些都有第三方库,如果不做数据量太大的话直接用sklearn这个库,特别方便。如果数据量大的话要分布式的话我只用mapreduce写过不分布式也有很多现成的库,所以机器学习算法这方面主要是要懂原理,知道每个算法怎么去应用。
分类的算法那么多,遇到具体数据集应该用那种就需要理解每种算法的原理和联系,比如遇到非正态分布的数据分类时用LDA不可以,遇到离散数据分类时可能用决策树,这些都不是绝对的,哪个好用哪个。机器学习算法那么多,想了解所有的太困难,每个大类了解一些基础的baseline,用到哪块再具体研究。比如推荐系统这方面,基础的算了解之后,做比赛发现仍然不能出好的效果,因为数据预处理是很重要的,无论在比赛还是在项目中,而数据预处理就要用到很多很多机器学习算法。
至于工作里面,不是很了解,但是经过实习3个月了解到的就是,机器学习用的不多,多的是找规则,筛选数据,无穷无尽。。。 你的水平连Python的门都没入,建议不要想着写程序,机器学习,先把Py语法弄懂,一些OOP语言的特性熟练以后再去做打算。 你刚把列表字典看完,路还远着呢,可以看看慕课网教程,每个知识点都有习题 感觉好像是没有任何基础,都不知道该从哪里说起了。
你可以用sklearn,先在小规模数据上应用机器学习算法试试。
或者你可以看看《机器学习实战》和《集体编程智慧》 重在练习,可以上checkio做题,挺适合初学者的,难度适中,完成一道题后,看看别人的答案,还是挺有收获的。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Minio Object Storage : Centos System Minio 하의 고성능 배포는 Go Language를 기반으로 개발 한 고성능 분산 객체 저장 시스템입니다. Amazons3과 호환됩니다. Java, Python, JavaScript 및 Go를 포함한 다양한 클라이언트 언어를 지원합니다. 이 기사는 CentOS 시스템에 대한 Minio의 설치 및 호환성을 간단히 소개합니다. CentOS 버전 호환성 Minio는 다음을 포함하되 이에 국한되지 않는 여러 CentOS 버전에서 확인되었습니다. CentOS7.9 : 클러스터 구성, 환경 준비, 구성 파일 설정, 디스크 파티셔닝 및 미니를 다루는 완전한 설치 안내서를 제공합니다.

CentOS 시스템에 대한 Pytorch 분산 교육에는 다음 단계가 필요합니다. Pytorch 설치 : 전제는 Python과 PIP가 CentOS 시스템에 설치된다는 것입니다. CUDA 버전에 따라 Pytorch 공식 웹 사이트에서 적절한 설치 명령을 받으십시오. CPU 전용 교육의 경우 다음 명령을 사용할 수 있습니다. PipinStalltorchtorchvisiontorchaudio GPU 지원이 필요한 경우 CUDA 및 CUDNN의 해당 버전이 설치되어 있는지 확인하고 해당 PyTorch 버전을 설치하려면 설치하십시오. 분산 환경 구성 : 분산 교육에는 일반적으로 여러 기계 또는 단일 기계 다중 GPU가 필요합니다. 장소

CentOS 시스템에 Pytorch를 설치할 때는 적절한 버전을 신중하게 선택하고 다음 주요 요소를 고려해야합니다. 1. 시스템 환경 호환성 : 운영 체제 : CentOS7 이상을 사용하는 것이 좋습니다. Cuda 및 Cudnn : Pytorch 버전 및 Cuda 버전은 밀접하게 관련되어 있습니다. 예를 들어, pytorch1.9.0은 cuda11.1을 필요로하고 Pytorch2.0.1은 cuda11.3을 필요로합니다. CUDNN 버전도 CUDA 버전과 일치해야합니다. Pytorch 버전을 선택하기 전에 호환 CUDA 및 CUDNN 버전이 설치되었는지 확인하십시오. 파이썬 버전 : Pytorch 공식 지점

Centos Nginx를 설치하려면 다음 단계를 수행해야합니다. 개발 도구, PCRE-DEVEL 및 OPENSSL-DEVEL과 같은 종속성 설치. nginx 소스 코드 패키지를 다운로드하고 압축을 풀고 컴파일하고 설치하고 설치 경로를/usr/local/nginx로 지정하십시오. nginx 사용자 및 사용자 그룹을 만들고 권한을 설정하십시오. 구성 파일 nginx.conf를 수정하고 청취 포트 및 도메인 이름/IP 주소를 구성하십시오. Nginx 서비스를 시작하십시오. 종속성 문제, 포트 충돌 및 구성 파일 오류와 같은 일반적인 오류는주의를 기울여야합니다. 캐시를 켜고 작업자 프로세스 수 조정과 같은 특정 상황에 따라 성능 최적화를 조정해야합니다.
