以金融从业为目的的 Python 学习应如何入门?
回复内容:
金融从业的范围其实听广泛的,有的岗位并不需要从业者熟悉Python或者其他编程语言,比如在证券、期货或者某些资产管理单位从事风控工作,基本上现有的IT系统功能已经很完善;从业者只是这些系统的用户,有新需求时通常要求系统的开发者来设计和开发,很少需要从业者亲自参与编程工作。可能您在题目中把金融从业理解为研究分析(宏观、策略、行业等)或者量化交易策略开发。这些工作由于或多或少需要频繁地处理大量的数据。熟练应用Python的话,能够使工作效率提高。在这个前提下,入门Python是有一定的偏向的,不同于以IT系统开发、维护为目的的Python学习。简而言之,这类工作需要Python提高数据处理的效率,那么关于Python数据处理的书籍、工具包文档都是入门时必要关注的。
在书籍方面,《Python for Data Analysis》(有中文译版)就可以作为参考。这本书出版时间相对较早了,赶不上软件开发的速度,所以书里的程序例子有些运行结果与新版的不一致。但是这并不妨碍您通过学习这本书而获得关于数据处理特别是金融数据处理的框架性认识。
在软件包方面,numpy, scipy, pandas, statsmodels, ipython, matplotlib是进行金融数据处理时非常有用的软件包,文档、案例都比较齐全。前面介绍的那本书有比较大的篇幅介绍这些软件包的使用。
在数据处理之外,可能您还想通过Python来进行衍生品定价、量化投资策略回测与实盘运行等工作,这些工作的内容其实大部分是在于业务自身的逻辑,编程工作的重要性略低。
归根到底,要想利用Python提高从事上述工作的效率,那么对于基本的数据结构和算法的充分理解是必要的。在数据处理中,pandas提供的Series, DataFrame,以及numpy提供的ndarray都是非常重要的数据结构,而Python语言自带的数据结构如List, tuple, dict等则是前面这些数据结构的基础,也是熟练地写出Python程序的基础,值得深入学习。算法方面,有些软件包自带了数据处理相关的算法,比如scipy中的优化模块、统计模块,pandas中的数据表增删改查以及向量化的统计量计算等。此外,Python自身也有一些特有的算法和表达式能提高效率,例如list comprehension。这些都是基础,在入门时最好能熟练地掌握。当然,像前面说的,您写的程序的逻辑,基本上还有由金融业务的逻辑来决定。
要想快速地入门,可以尝试掌握基本的Python语法后(通过Python的tutorial),从前面介绍的书本入手,一个一个地解决一些问题,比如把不同格式的数据表导入到Python中,转换为所需要的数据结构,各种形势的画图,将结果输出到文件。可以在IPython这样的交互式环境中进行,也可以在操作系统中直接运行.py文件来进行。这样可以熟悉基本的流程及其实现方式。
在此基础上,可以利用Python来解决一些金融方面的问题,例如:考察各个宏观经济变量与资本市场各类价格之间的相关性、某个选股因子的有效性检验、测试某些技术指标在投资中的有效性、计算某些奇异期权或者结构化产品的价格等。这样入门Python,不仅能够使得编程工作有一定的挑战、有意思,也能够加深对金融业务逻辑的理解。
谢邀。 福利

把他当字典看。
然后就是这些书了
然后还有代码 这些代码挺好的 虽然不是很齐全 但是总比没有好
还有零星几本R和matlab的
网盘地址 python量化.zip_免费高速下载 http://www.amazon.com/Python-Finance-Analyze-Financial-Data/dp/1491945281/ref=sr_1_1?ie=UTF8&qid=1441289843&sr=8-1&keywords=finance+python 首先通过学习python学会编程,再将python应用到专业领域。
找一本好书,认真敲代码,做到自己写代码解决一些小问题。
加油! py大法包罗万象,金融分析,推荐英文版:Packt.Mastering.Python.for.Finance.1784394513.pdf_免费高速下载

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.

이 튜토리얼은 간단한 나무 탐색을 넘어서 DOM 조작에 중점을 둔 아름다운 수프에 대한 이전 소개를 바탕으로합니다. HTML 구조를 수정하기위한 효율적인 검색 방법과 기술을 탐색하겠습니다. 일반적인 DOM 검색 방법 중 하나는 EX입니다

이 기사는 프로젝트 종속성 관리 및 충돌을 피하는 데 중점을 둔 Python에서 가상 환경의 역할에 대해 설명합니다. 프로젝트 관리 개선 및 종속성 문제를 줄이는 데있어 생성, 활성화 및 이점을 자세히 설명합니다.
