예배 규칙서 찾다
前言 何为PostgreSQL? PostgreSQL简史 格式约定 更多信息 臭虫汇报指导 I. 教程 章1. 从头开始 1.1. 安装 1.2. 体系基本概念 1.3. 创建一个数据库 1.4. 访问数据库 章2. SQL语言 2.1. 介绍 2.2. 概念 2.3. 创建新表 2.4. 向表中添加行 2.5. 查询一个表 2.6. 表间链接 2.7. 聚集函数 2.8. 更新 2.9. 删除 章3. 高级特性 3.1. 介绍 3.2. 视图 3.3. 外键 3.4. 事务 3.5. 窗口函数 3.6. 继承 3.7. 结论 II. SQL语言 章4. SQL语法 4.1. 词法结构 4.2. 值表达式 4.3. 调用函数 章5. 数据定义 5.1. 表的基本概念 5.2. 缺省值 5.3. 约束 5.4. 系统字段 5.5. 修改表 5.6. 权限 5.7. 模式 5.8. 继承 5.9. 分区 5.10. 其它数据库对象 5.11. 依赖性跟踪 章 6. 数据操作 6.1. 插入数据 6.2. 更新数据 6.3. 删除数据 章7. 查询 7.1. 概述 7.2. 表表达式 7.3. 选择列表 7.4. 组合查询 7.5. 行排序 7.6. LIMIT和OFFSET 7.7. VALUES列表 7.8. WITH的查询(公用表表达式) 章8. 数据类型 8.1. 数值类型 8.2. 货币类型 8.3. 字符类型 8.4. 二进制数据类型 8.5. 日期/时间类型 8.6. 布尔类型 8.7. 枚举类型 8.8. 几何类型 8.9. 网络地址类型 8.10. 位串类型 8.11. 文本搜索类型 8.12. UUID类型 8.13. XML类型 8.14. 数组 8.15. 复合类型 8.16. 对象标识符类型 8.17. 伪类型 章 9. 函数和操作符 9.1. 逻辑操作符 9.2. 比较操作符 9.3. 数学函数和操作符 9.4. 字符串函数和操作符 9.5. 二进制字符串函数和操作符 9.6. 位串函数和操作符 9.7. 模式匹配 9.8. 数据类型格式化函数 9.9. 时间/日期函数和操作符 9.10. 支持枚举函数 9.11. 几何函数和操作符 9.12. 网络地址函数和操作符 9.13. 文本检索函数和操作符 9.14. XML函数 9.15. 序列操作函数 9.16. 条件表达式 9.17. 数组函数和操作符 9.18. 聚合函数 9.19. 窗口函数 9.20. 子查询表达式 9.21. 行和数组比较 9.22. 返回集合的函数 9.23. 系统信息函数 9.24. 系统管理函数 9.25. 触发器函数 章10. 类型转换 10.3. 函数 10.2. 操作符 10.1. 概述 10.4. 值存储 10.5. UNION 章11. 索引 11.1. 介绍 11.2. 索引类型 11.3. 多字段索引 11.4. 索引和ORDER BY 11.5. 组合多个索引 11.6. 唯一索引 11.7. 表达式上的索引 11.8. 部分索引 11.9. 操作类和操作簇 11.10. 检查索引的使用 章12. Full Text Search 12.1. Introduction 12.2. Tables and Indexes 12.3. Controlling Text Search 12.4. Additional Features 12.5. Parsers 12.6. Dictionaries 12.7. Configuration Example 12.8. Testing and Debugging Text Search 12.9. GiST and GIN Index Types 12.10. psql Support 12.11. Limitations 12.12. Migration from Pre-8.3 Text Search 章13. 并发控制 13.1. 介绍 13.2. 事务隔离 13.3. 明确锁定 13.4. 应用层数据完整性检查 13.5. 锁和索引 章14. 性能提升技巧 14.1. 使用EXPLAIN 14.2. 规划器使用的统计信息 14.3. 用明确的JOIN语句控制规划器 14.4. 向数据库中添加记录 14.5. 非持久性设置 III. 服务器管理 章15. 安装指导 15.1. 简版 15.2. 要求 15.3. 获取源码 15.4. 升级 15.5. 安装过程 15.6. 安装后的设置 15.7. 支持的平台 15.8. 特殊平台的要求 章16. Installation from Source Code on Windows 16.1. Building with Visual C++ or the Platform SDK 16.2. Building libpq with Visual C++ or Borland C++ 章17. 服务器安装和操作 17.1. PostgreSQL用户帐户 17.2. 创建数据库集群 17.3. 启动数据库服务器 17.4. 管理内核资源 17.5. 关闭服务 17.6. 防止服务器欺骗 17.7. 加密选项 17.8. 用SSL进行安全的TCP/IP连接 17.9. Secure TCP/IP Connections with SSH Tunnels 章18. 服务器配置 18.1. 设置参数 18.2. 文件位置 18.3. 连接和认证 18.4. 资源消耗 18.5. 预写式日志 18.6. 查询规划 18.7. 错误报告和日志 18.8. 运行时统计 18.9. 自动清理 18.10. 客户端连接缺省 18.12. 版本和平台兼容性 18.11. 锁管理 18.13. 预置选项 18.14. 自定义的选项 18.15. 开发人员选项 18.16. 短选项 章19. 用户认证 19.1. pg_hba.conf 文件 19.2. 用户名映射 19.3. 认证方法 19.4. 用户认证 章20. 数据库角色和权限 20.1. 数据库角色 20.2. 角色属性 20.3. 权限 20.4. 角色成员 20.5. 函数和触发器 章21. 管理数据库 21.1. 概述 21.2. 创建一个数据库 21.3. 临时库 21.4. 数据库配置 21.5. 删除数据库 21.6. 表空间 章22. 本土化 22.1. 区域支持 22.2. 字符集支持 章23. 日常数据库维护工作 23.1. Routine Vacuuming日常清理 23.2. 经常重建索引 23.3. 日志文件维护 章24. 备份和恢复 24.1. SQL转储 24.2. 文件系统级别的备份 24.3. 在线备份以及即时恢复(PITR) 24.4. 版本间迁移 章25. 高可用性与负载均衡,复制 25.1. 不同解决方案的比较 25.2. 日志传送备份服务器 25.3. 失效切换 25.4. 日志传送的替代方法 25.5. 热备 章26. 恢复配置 26.1. 归档恢复设置 26.2. 恢复目标设置 26.3. 备服务器设置 章27. 监控数据库的活动 27.1. 标准Unix工具 27.2. 统计收集器 27.3. 查看锁 27.4. 动态跟踪 章28. 监控磁盘使用情况 28.1. 判断磁盘的使用量 28.2. 磁盘满导致的失效 章29. 可靠性和预写式日志 29.1. 可靠性 29.2. 预写式日志(WAL) 29.3. 异步提交 29.4. WAL配置 29.5. WAL内部 章30. Regression Tests 30.1. Running the Tests 30.2. Test Evaluation 30.3. Variant Comparison Files 30.4. Test Coverage Examination IV. 客户端接口 章31. libpq-C库 31.1. 数据库联接函数 31.2. 连接状态函数 31.3. 命令执行函数 31.4. 异步命令处理 31.5. 取消正在处理的查询 31.6. 捷径接口 31.7. 异步通知 31.8. 与COPY命令相关的函数 31.9. Control Functions 控制函数 31.10. 其他函数 31.11. 注意信息处理 31.12. 事件系统 31.13. 环境变量 31.14. 口令文件 31.15. 连接服务的文件 31.16. LDAP查找连接参数 31.17. SSL支持 31.18. 在多线程程序里的行为 31.19. 制作libpq程序 31.20. 例子程序 章32. 大对象 32.1. 介绍 32.2. 实现特点 32.3. 客户端接口 32.4. 服务器端函数 32.5. 例子程序 章33. ECPG - Embedded SQL in C 33.1. The Concept 33.2. Connecting to the Database Server 33.3. Closing a Connection 33.4. Running SQL Commands 33.5. Choosing a Connection 33.6. Using Host Variables 33.7. Dynamic SQL 33.8. pgtypes library 33.9. Using Descriptor Areas 33.10. Informix compatibility mode 33.11. Error Handling 33.12. Preprocessor directives 33.13. Processing Embedded SQL Programs 33.14. Library Functions 33.15. Internals 章34. 信息模式 34.1. 关于这个模式 34.2. 数据类型 34.3. information_schema_catalog_name 34.4. administrable_role_authorizations 34.5. applicable_roles 34.6. attributes 34.7. check_constraint_routine_usage 34.8. check_constraints 34.9. column_domain_usage 34.10. column_privileges 34.11. column_udt_usage 34.12. 字段 34.13. constraint_column_usage 34.14. constraint_table_usage 34.15. data_type_privileges 34.16. domain_constraints 34.18. domains 34.17. domain_udt_usage 34.19. element_types 34.20. enabled_roles 34.21. foreign_data_wrapper_options 34.22. foreign_data_wrappers 34.23. foreign_server_options 34.24. foreign_servers 34.25. key_column_usage 34.26. parameters 34.27. referential_constraints 34.28. role_column_grants 34.29. role_routine_grants 34.30. role_table_grants 34.31. role_usage_grants 34.32. routine_privileges 34.33. routines 34.34. schemata 34.35. sequences 34.36. sql_features 34.37. sql_implementation_info 34.38. sql_languages 34.39. sql_packages 34.40. sql_parts 34.41. sql_sizing 34.42. sql_sizing_profiles 34.43. table_constraints 34.44. table_privileges 34.45. tables 34.46. triggered_update_columns 34.47. 触发器 34.48. usage_privileges 34.49. user_mapping_options 34.50. user_mappings 34.51. view_column_usage 34.52. view_routine_usage 34.53. view_table_usage 34.54. 视图 V. 服务器端编程 章35. 扩展SQL 35.1. 扩展性是如何实现的 35.2. PostgreSQL类型系统 35.3. User-Defined Functions 35.4. Query Language (SQL) Functions 35.5. Function Overloading 35.6. Function Volatility Categories 35.7. Procedural Language Functions 35.8. Internal Functions 35.9. C-Language Functions 35.10. User-Defined Aggregates 35.11. User-Defined Types 35.12. User-Defined Operators 35.13. Operator Optimization Information 35.14. Interfacing Extensions To Indexes 35.15. 用C++扩展 章36. 触发器 36.1. 触发器行为概述 36.3. 用 C 写触发器 36.2. 数据改变的可视性 36.4. 一个完整的例子 章37. 规则系统 37.1. The Query Tree 37.2. 视图和规则系统 37.3. 在INSERT,UPDATE和DELETE上的规则 37.4. 规则和权限 37.5. 规则和命令状态 37.6. 规则与触发器得比较 章38. Procedural Languages 38.1. Installing Procedural Languages 章39. PL/pgSQL - SQL过程语言 39.1. 概述 39.2. PL/pgSQL的结构 39.3. 声明 39.4. 表达式 39.5. 基本语句 39.6. 控制结构 39.7. 游标 39.8. 错误和消息 39.9. 触发器过程 39.10. PL/pgSQL Under the Hood 39.11. 开发PL/pgSQL的一些提示 39.12. 从OraclePL/SQL 进行移植 章40. PL/Tcl - Tcl Procedural Language 40.1. Overview 40.2. PL/Tcl Functions and Arguments 40.3. Data Values in PL/Tcl 40.4. Global Data in PL/Tcl 40.5. Database Access from PL/Tcl 40.6. Trigger Procedures in PL/Tcl 40.7. Modules and the unknown command 40.8. Tcl Procedure Names 章41. PL/Perl - Perl Procedural Language 41.1. PL/Perl Functions and Arguments 41.2. Data Values in PL/Perl 41.3. Built-in Functions 41.4. Global Values in PL/Perl 41.6. PL/Perl Triggers 41.5. Trusted and Untrusted PL/Perl 41.7. PL/Perl Under the Hood 章42. PL/Python - Python Procedural Language 42.1. Python 2 vs. Python 3 42.2. PL/Python Functions 42.3. Data Values 42.4. Sharing Data 42.5. Anonymous Code Blocks 42.6. Trigger Functions 42.7. Database Access 42.8. Utility Functions 42.9. Environment Variables 章43. Server Programming Interface 43.1. Interface Functions Spi-spi-connect Spi-spi-finish Spi-spi-push Spi-spi-pop Spi-spi-execute Spi-spi-exec Spi-spi-execute-with-args Spi-spi-prepare Spi-spi-prepare-cursor Spi-spi-prepare-params Spi-spi-getargcount Spi-spi-getargtypeid Spi-spi-is-cursor-plan Spi-spi-execute-plan Spi-spi-execute-plan-with-paramlist Spi-spi-execp Spi-spi-cursor-open Spi-spi-cursor-open-with-args Spi-spi-cursor-open-with-paramlist Spi-spi-cursor-find Spi-spi-cursor-fetch Spi-spi-cursor-move Spi-spi-scroll-cursor-fetch Spi-spi-scroll-cursor-move Spi-spi-cursor-close Spi-spi-saveplan 43.2. Interface Support Functions Spi-spi-fname Spi-spi-fnumber Spi-spi-getvalue Spi-spi-getbinval Spi-spi-gettype Spi-spi-gettypeid Spi-spi-getrelname Spi-spi-getnspname 43.3. Memory Management Spi-spi-palloc Spi-realloc Spi-spi-pfree Spi-spi-copytuple Spi-spi-returntuple Spi-spi-modifytuple Spi-spi-freetuple Spi-spi-freetupletable Spi-spi-freeplan 43.4. Visibility of Data Changes 43.5. Examples VI. 参考手册 I. SQL命令 Sql-abort Sql-alteraggregate Sql-alterconversion Sql-alterdatabase Sql-alterdefaultprivileges Sql-alterdomain Sql-alterforeigndatawrapper Sql-alterfunction Sql-altergroup Sql-alterindex Sql-alterlanguage Sql-alterlargeobject Sql-alteroperator Sql-alteropclass Sql-alteropfamily Sql-alterrole Sql-alterschema Sql-altersequence Sql-alterserver Sql-altertable Sql-altertablespace Sql-altertsconfig Sql-altertsdictionary Sql-altertsparser Sql-altertstemplate Sql-altertrigger Sql-altertype Sql-alteruser Sql-alterusermapping Sql-alterview Sql-analyze Sql-begin Sql-checkpoint Sql-close Sql-cluster Sql-comment Sql-commit Sql-commit-prepared Sql-copy Sql-createaggregate Sql-createcast Sql-createconstraint Sql-createconversion Sql-createdatabase Sql-createdomain Sql-createforeigndatawrapper Sql-createfunction Sql-creategroup Sql-createindex Sql-createlanguage Sql-createoperator Sql-createopclass Sql-createopfamily Sql-createrole Sql-createrule Sql-createschema Sql-createsequence Sql-createserver Sql-createtable Sql-createtableas Sql-createtablespace Sql-createtsconfig Sql-createtsdictionary Sql-createtsparser Sql-createtstemplate Sql-createtrigger Sql-createtype Sql-createuser Sql-createusermapping Sql-createview Sql-deallocate Sql-declare Sql-delete Sql-discard Sql-do Sql-dropaggregate Sql-dropcast Sql-dropconversion Sql-dropdatabase Sql-dropdomain Sql-dropforeigndatawrapper Sql-dropfunction Sql-dropgroup Sql-dropindex Sql-droplanguage Sql-dropoperator Sql-dropopclass Sql-dropopfamily Sql-drop-owned Sql-droprole Sql-droprule Sql-dropschema Sql-dropsequence Sql-dropserver Sql-droptable Sql-droptablespace Sql-droptsconfig Sql-droptsdictionary Sql-droptsparser Sql-droptstemplate Sql-droptrigger Sql-droptype Sql-dropuser Sql-dropusermapping Sql-dropview Sql-end Sql-execute Sql-explain Sql-fetch Sql-grant Sql-insert Sql-listen Sql-load Sql-lock Sql-move Sql-notify Sql-prepare Sql-prepare-transaction Sql-reassign-owned Sql-reindex Sql-release-savepoint Sql-reset Sql-revoke Sql-rollback Sql-rollback-prepared Sql-rollback-to Sql-savepoint Sql-select Sql-selectinto Sql-set Sql-set-constraints Sql-set-role Sql-set-session-authorization Sql-set-transaction Sql-show Sql-start-transaction Sql-truncate Sql-unlisten Sql-update Sql-vacuum Sql-values II. 客户端应用程序 App-clusterdb App-createdb App-createlang App-createuser App-dropdb App-droplang App-dropuser App-ecpg App-pgconfig App-pgdump App-pg-dumpall App-pgrestore App-psql App-reindexdb App-vacuumdb III. PostgreSQL服务器应用程序 App-initdb App-pgcontroldata App-pg-ctl App-pgresetxlog App-postgres App-postmaster VII. 内部 章44. PostgreSQL内部概览 44.1. 查询路径 44.2. 连接是如何建立起来的 44.3. 分析器阶段 44.4. ThePostgreSQL规则系统 44.5. 规划器/优化器 44.6. 执行器 章45. 系统表 45.1. 概述 45.2. pg_aggregate 45.3. pg_am 45.4. pg_amop 45.5. pg_amproc 45.6. pg_attrdef 45.7. pg_attribute 45.8. pg_authid 45.9. pg_auth_members 45.10. pg_cast 45.11. pg_class 45.12. pg_constraint 45.13. pg_conversion 45.14. pg_database 45.15. pg_db_role_setting 45.16. pg_default_acl 45.17. pg_depend 45.18. pg_description 45.19. pg_enum 45.20. pg_foreign_data_wrapper 45.21. pg_foreign_server 45.22. pg_index 45.23. pg_inherits 45.24. pg_language 45.25. pg_largeobject 45.26. pg_largeobject_metadata 45.27. pg_namespace 45.28. pg_opclass 45.29. pg_operator 45.30. pg_opfamily 45.31. pg_pltemplate 45.32. pg_proc 45.33. pg_rewrite 45.34. pg_shdepend 45.35. pg_shdescription 45.36. pg_statistic 45.37. pg_tablespace 45.38. pg_trigger 45.39. pg_ts_config 45.40. pg_ts_config_map 45.41. pg_ts_dict 45.42. pg_ts_parser 45.43. pg_ts_template 45.44. pg_type 45.45. pg_user_mapping 45.46. System Views 45.47. pg_cursors 45.48. pg_group 45.49. pg_indexes 45.50. pg_locks 45.51. pg_prepared_statements 45.52. pg_prepared_xacts 45.53. pg_roles 45.54. pg_rules 45.55. pg_settings 45.56. pg_shadow 45.57. pg_stats 45.58. pg_tables 45.59. pg_timezone_abbrevs 45.60. pg_timezone_names 45.61. pg_user 45.62. pg_user_mappings 45.63. pg_views 章46. Frontend/Backend Protocol 46.1. Overview 46.2. Message Flow 46.3. Streaming Replication Protocol 46.4. Message Data Types 46.5. Message Formats 46.6. Error and Notice Message Fields 46.7. Summary of Changes since Protocol 2.0 47. PostgreSQL Coding Conventions 47.1. Formatting 47.2. Reporting Errors Within the Server 47.3. Error Message Style Guide 章48. Native Language Support 48.1. For the Translator 48.2. For the Programmer 章49. Writing A Procedural Language Handler 章50. Genetic Query Optimizer 50.1. Query Handling as a Complex Optimization Problem 50.2. Genetic Algorithms 50.3. Genetic Query Optimization (GEQO) in PostgreSQL 50.4. Further Reading 章51. 索引访问方法接口定义 51.1. 索引的系统表记录 51.2. 索引访问方法函数 51.3. 索引扫描 51.4. 索引锁的考量 51.5. 索引唯一性检查 51.6. 索引开销估计函数 章52. GiST Indexes 52.1. Introduction 52.2. Extensibility 52.3. Implementation 52.4. Examples 52.5. Crash Recovery 章53. GIN Indexes 53.1. Introduction 53.2. Extensibility 53.3. Implementation 53.4. GIN tips and tricks 53.5. Limitations 53.6. Examples 章54. 数据库物理存储 54.1. 数据库文件布局 54.2. TOAST 54.3. 自由空间映射 54.4. 可见映射 54.5. 数据库分页文件 章55. BKI后端接口 55.1. BKI 文件格式 55.2. BKI命令 55.3. 系统初始化的BKI文件的结构 55.4. 例子 章56. 规划器如何使用统计信息 56.1. 行预期的例子 VIII. 附录 A. PostgreSQL错误代码 B. 日期/时间支持 B.1. 日期/时间输入解析 B.2. 日期/时间关键字 B.3. 日期/时间配置文件 B.4. 日期单位的历史 C. SQL关键字 D. SQL Conformance D.1. Supported Features D.2. Unsupported Features E. Release Notes Release-0-01 Release-0-02 Release-0-03 Release-1-0 Release-1-01 Release-1-02 Release-1-09 Release-6-0 Release-6-1 Release-6-1-1 Release-6-2 Release-6-2-1 Release-6-3 Release-6-3-1 Release-6-3-2 Release-6-4 Release-6-4-1 Release-6-4-2 Release-6-5 Release-6-5-1 Release-6-5-2 Release-6-5-3 Release-7-0 Release-7-0-1 Release-7-0-2 Release-7-0-3 Release-7-1 Release-7-1-1 Release-7-1-2 Release-7-1-3 Release-7-2 Release-7-2-1 Release-7-2-2 Release-7-2-3 Release-7-2-4 Release-7-2-5 Release-7-2-6 Release-7-2-7 Release-7-2-8 Release-7-3 Release-7-3-1 Release-7-3-10 Release-7-3-11 Release-7-3-12 Release-7-3-13 Release-7-3-14 Release-7-3-15 Release-7-3-16 Release-7-3-17 Release-7-3-18 Release-7-3-19 Release-7-3-2 Release-7-3-20 Release-7-3-21 Release-7-3-3 Release-7-3-4 Release-7-3-5 Release-7-3-6 Release-7-3-7 Release-7-3-8 Release-7-3-9 Release-7-4 Release-7-4-1 Release-7-4-10 Release-7-4-11 Release-7-4-12 Release-7-4-13 Release-7-4-14 Release-7-4-15 Release-7-4-16 Release-7-4-17 Release-7-4-18 Release-7-4-19 Release-7-4-2 Release-7-4-20 Release-7-4-21 Release-7-4-22 Release-7-4-23 Release-7-4-24 Release-7-4-25 Release-7-4-26 Release-7-4-27 Release-7-4-28 Release-7-4-29 Release-7-4-3 Release-7-4-30 Release-7-4-4 Release-7-4-5 Release-7-4-6 Release-7-4-7 Release-7-4-8 Release-7-4-9 Release-8-0 Release-8-0-1 Release-8-0-10 Release-8-0-11 Release-8-0-12 Release-8-0-13 Release-8-0-14 Release-8-0-15 Release-8-0-16 Release-8-0-17 Release-8-0-18 Release-8-0-19 Release-8-0-2 Release-8-0-20 Release-8-0-21 Release-8-0-22 Release-8-0-23 Release-8-0-24 Release-8-0-25 Release-8-0-26 Release-8-0-3 Release-8-0-4 Release-8-0-5 Release-8-0-6 Release-8-0-7 Release-8-0-8 Release-8-0-9 Release-8-1 Release-8-1-1 Release-8-1-10 Release-8-1-11 Release-8-1-12 Release-8-1-13 Release-8-1-14 Release-8-1-15 Release-8-1-16 Release-8-1-17 Release-8-1-18 Release-8-1-19 Release-8-1-2 Release-8-1-20 Release-8-1-21 Release-8-1-22 Release-8-1-23 Release-8-1-3 Release-8-1-4 Release-8-1-5 Release-8-1-6 Release-8-1-7 Release-8-1-8 Release-8-1-9 Release-8-2 Release-8-2-1 Release-8-2-10 Release-8-2-11 Release-8-2-12 Release-8-2-13 Release-8-2-14 Release-8-2-15 Release-8-2-16 Release-8-2-17 Release-8-2-18 Release-8-2-19 Release-8-2-2 Release-8-2-20 Release-8-2-21 Release-8-2-3 Release-8-2-4 Release-8-2-5 Release-8-2-6 Release-8-2-7 Release-8-2-8 Release-8-2-9 Release-8-3 Release-8-3-1 Release-8-3-10 Release-8-3-11 Release-8-3-12 Release-8-3-13 Release-8-3-14 Release-8-3-15 Release-8-3-2 Release-8-3-3 Release-8-3-4 Release-8-3-5 Release-8-3-6 Release-8-3-7 Release-8-3-8 Release-8-3-9 Release-8-4 Release-8-4-1 Release-8-4-2 Release-8-4-3 Release-8-4-4 Release-8-4-5 Release-8-4-6 Release-8-4-7 Release-8-4-8 Release-9-0 Release-9-0-1 Release-9-0-2 Release-9-0-3 Release-9-0-4 F. 额外提供的模块 F.1. adminpack F.2. auto_explain F.3. btree_gin F.4. btree_gist F.5. chkpass F.6. citext F.7. cube F.8. dblink Contrib-dblink-connect Contrib-dblink-connect-u Contrib-dblink-disconnect Contrib-dblink Contrib-dblink-exec Contrib-dblink-open Contrib-dblink-fetch Contrib-dblink-close Contrib-dblink-get-connections Contrib-dblink-error-message Contrib-dblink-send-query Contrib-dblink-is-busy Contrib-dblink-get-notify Contrib-dblink-get-result Contrib-dblink-cancel-query Contrib-dblink-get-pkey Contrib-dblink-build-sql-insert Contrib-dblink-build-sql-delete Contrib-dblink-build-sql-update F.9. dict_int F.10. dict_xsyn F.11. earthdistance F.12. fuzzystrmatch F.13. hstore F.14. intagg F.15. intarray F.16. isn F.17. lo F.18. ltree F.19. oid2name F.20. pageinspect F.21. passwordcheck F.22. pg_archivecleanup F.23. pgbench F.24. pg_buffercache F.25. pgcrypto F.26. pg_freespacemap F.27. pgrowlocks F.28. pg_standby F.29. pg_stat_statements F.30. pgstattuple F.31. pg_trgm F.32. pg_upgrade F.33. seg F.34. spi F.35. sslinfo F.36. tablefunc F.37. test_parser F.38. tsearch2 F.39. unaccent F.40. uuid-ossp F.41. vacuumlo F.42. xml2 G. 外部项目 G.1. 客户端接口 G.2. 过程语言 G.3. 扩展 H. The Source Code Repository H.1. Getting The Source Via Git I. 文档 I.1. DocBook I.2. 工具集 I.3. 制作文档 I.4. 文档写作 I.5. 风格指导 J. 首字母缩略词 参考书目 Bookindex Index
문자

46.2. Message Flow

This section describes the message flow and the semantics of each message type. (Details of the exact representation of each message appear in Section 46.5.) There are several different sub-protocols depending on the state of the connection: start-up, query, function call, COPY, and termination. There are also special provisions for asynchronous operations (including notification responses and command cancellation), which can occur at any time after the start-up phase.

46.2.1. Start-Up

To begin a session, a frontend opens a connection to the server and sends a startup message. This message includes the names of the user and of the database the user wants to connect to; it also identifies the particular protocol version to be used. (Optionally, the startup message can include additional settings for run-time parameters.) The server then uses this information and the contents of its configuration files (such as pg_hba.conf) to determine whether the connection is provisionally acceptable, and what additional authentication is required (if any).

The server then sends an appropriate authentication request message, to which the frontend must reply with an appropriate authentication response message (such as a password). For all authentication methods except GSSAPI and SSPI, there is at most one request and one response. In some methods, no response at all is needed from the frontend, and so no authentication request occurs. For GSSAPI and SSPI, multiple exchanges of packets may be needed to complete the authentication.

The authentication cycle ends with the server either rejecting the connection attempt (ErrorResponse), or sending AuthenticationOk.

The possible messages from the server in this phase are:

ErrorResponse

The connection attempt has been rejected. The server then immediately closes the connection.

AuthenticationOk

The authentication exchange is successfully completed.

AuthenticationKerberosV5

The frontend must now take part in a Kerberos V5 authentication dialog (not described here, part of the Kerberos specification) with the server. If this is successful, the server responds with an AuthenticationOk, otherwise it responds with an ErrorResponse.

AuthenticationCleartextPassword

The frontend must now send a PasswordMessage containing the password in clear-text form. If this is the correct password, the server responds with an AuthenticationOk, otherwise it responds with an ErrorResponse.

AuthenticationMD5Password

The frontend must now send a PasswordMessage containing the password encrypted via MD5, using the 4-character salt specified in the AuthenticationMD5Password message. If this is the correct password, the server responds with an AuthenticationOk, otherwise it responds with an ErrorResponse.

AuthenticationSCMCredential

This response is only possible for local Unix-domain connections on platforms that support SCM credential messages. The frontend must issue an SCM credential message and then send a single data byte. (The contents of the data byte are uninteresting; it's only used to ensure that the server waits long enough to receive the credential message.) If the credential is acceptable, the server responds with an AuthenticationOk, otherwise it responds with an ErrorResponse.

AuthenticationGSS

The frontend must now initiate a GSSAPI negotiation. The frontend will send a PasswordMessage with the first part of the GSSAPI data stream in response to this. If further messages are needed, the server will respond with AuthenticationGSSContinue.

AuthenticationSSPI

The frontend must now initiate a SSPI negotiation. The frontend will send a PasswordMessage with the first part of the SSPI data stream in response to this. If further messages are needed, the server will respond with AuthenticationGSSContinue.

AuthenticationGSSContinue

This message contains the response data from the previous step of GSSAPI or SSPI negotiation (AuthenticationGSS, AuthenticationSSPI or a previous AuthenticationGSSContinue). If the GSSAPI or SSPI data in this message indicates more data is needed to complete the authentication, the frontend must send that data as another PasswordMessage. If GSSAPI or SSPI authentication is completed by this message, the server will next send AuthenticationOk to indicate successful authentication or ErrorResponse to indicate failure.

If the frontend does not support the authentication method requested by the server, then it should immediately close the connection.

After having received AuthenticationOk, the frontend must wait for further messages from the server. In this phase a backend process is being started, and the frontend is just an interested bystander. It is still possible for the startup attempt to fail (ErrorResponse), but in the normal case the backend will send some ParameterStatus messages, BackendKeyData, and finally ReadyForQuery.

During this phase the backend will attempt to apply any additional run-time parameter settings that were given in the startup message. If successful, these values become session defaults. An error causes ErrorResponse and exit.

The possible messages from the backend in this phase are:

BackendKeyData

This message provides secret-key data that the frontend must save if it wants to be able to issue cancel requests later. The frontend should not respond to this message, but should continue listening for a ReadyForQuery message.

ParameterStatus

This message informs the frontend about the current (initial) setting of backend parameters, such as client_encoding or DateStyle. The frontend can ignore this message, or record the settings for its future use; see Section 46.2.6 for more details. The frontend should not respond to this message, but should continue listening for a ReadyForQuery message.

ReadyForQuery

Start-up is completed. The frontend can now issue commands.

ErrorResponse

Start-up failed. The connection is closed after sending this message.

NoticeResponse

A warning message has been issued. The frontend should display the message but continue listening for ReadyForQuery or ErrorResponse.

The ReadyForQuery message is the same one that the backend will issue after each command cycle. Depending on the coding needs of the frontend, it is reasonable to consider ReadyForQuery as starting a command cycle, or to consider ReadyForQuery as ending the start-up phase and each subsequent command cycle.

46.2.2. Simple Query

A simple query cycle is initiated by the frontend sending a Query message to the backend. The message includes an SQL command (or commands) expressed as a text string. The backend then sends one or more response messages depending on the contents of the query command string, and finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it can safely send a new command. (It is not actually necessary for the frontend to wait for ReadyForQuery before issuing another command, but the frontend must then take responsibility for figuring out what happens if the earlier command fails and already-issued later commands succeed.)

The possible response messages from the backend are:

CommandComplete

An SQL command completed normally.

CopyInResponse

The backend is ready to copy data from the frontend to a table; see Section 46.2.5.

CopyOutResponse

The backend is ready to copy data from a table to the frontend; see Section 46.2.5.

RowDescription

Indicates that rows are about to be returned in response to a SELECT, FETCH, etc query. The contents of this message describe the column layout of the rows. This will be followed by a DataRow message for each row being returned to the frontend.

DataRow

One of the set of rows returned by a SELECT, FETCH, etc query.

EmptyQueryResponse

An empty query string was recognized.

ErrorResponse

An error has occurred.

ReadyForQuery

Processing of the query string is complete. A separate message is sent to indicate this because the query string might contain multiple SQL commands. (CommandComplete marks the end of processing one SQL command, not the whole string.) ReadyForQuery will always be sent, whether processing terminates successfully or with an error.

NoticeResponse

A warning message has been issued in relation to the query. Notices are in addition to other responses, i.e., the backend will continue processing the command.

The response to a SELECT query (or other queries that return row sets, such as EXPLAIN or SHOW) normally consists of RowDescription, zero or more DataRow messages, and then CommandComplete. COPY to or from the frontend invokes special protocol as described in Section 46.2.5. All other query types normally produce only a CommandComplete message.

Since a query string could contain several queries (separated by semicolons), there might be several such response sequences before the backend finishes processing the query string. ReadyForQuery is issued when the entire string has been processed and the backend is ready to accept a new query string.

If a completely empty (no contents other than whitespace) query string is received, the response is EmptyQueryResponse followed by ReadyForQuery.

In the event of an error, ErrorResponse is issued followed by ReadyForQuery. All further processing of the query string is aborted by ErrorResponse (even if more queries remained in it). Note that this might occur partway through the sequence of messages generated by an individual query.

In simple Query mode, the format of retrieved values is always text, except when the given command is a FETCH from a cursor declared with the BINARY option. In that case, the retrieved values are in binary format. The format codes given in the RowDescription message tell which format is being used.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever it is expecting any other type of message. See also Section 46.2.6 concerning messages that the backend might generate due to outside events.

Recommended practice is to code frontends in a state-machine style that will accept any message type at any time that it could make sense, rather than wiring in assumptions about the exact sequence of messages.

46.2.3. Extended Query

The extended query protocol breaks down the above-described simple query protocol into multiple steps. The results of preparatory steps can be re-used multiple times for improved efficiency. Furthermore, additional features are available, such as the possibility of supplying data values as separate parameters instead of having to insert them directly into a query string.

In the extended protocol, the frontend first sends a Parse message, which contains a textual query string, optionally some information about data types of parameter placeholders, and the name of a destination prepared-statement object (an empty string selects the unnamed prepared statement). The response is either ParseComplete or ErrorResponse. Parameter data types can be specified by OID; if not given, the parser attempts to infer the data types in the same way as it would do for untyped literal string constants.

Note: A parameter data type can be left unspecified by setting it to zero, or by making the array of parameter type OIDs shorter than the number of parameter symbols ($n) used in the query string. Another special case is that a parameter's type can be specified as void (that is, the OID of the void pseudotype). This is meant to allow parameter symbols to be used for function parameters that are actually OUT parameters. Ordinarily there is no context in which a void parameter could be used, but if such a parameter symbol appears in a function's parameter list, it is effectively ignored. For example, a function call such as foo($1,$2,$3,$4) could match a function with two IN and two OUT arguments, if $3 and $4 are specified as having type void.

Note: The query string contained in a Parse message cannot include more than one SQL statement; else a syntax error is reported. This restriction does not exist in the simple-query protocol, but it does exist in the extended protocol, because allowing prepared statements or portals to contain multiple commands would complicate the protocol unduly.

If successfully created, a named prepared-statement object lasts till the end of the current session, unless explicitly destroyed. An unnamed prepared statement lasts only until the next Parse statement specifying the unnamed statement as destination is issued. (Note that a simple Query message also destroys the unnamed statement.) Named prepared statements must be explicitly closed before they can be redefined by a Parse message, but this is not required for the unnamed statement. Named prepared statements can also be created and accessed at the SQL command level, using PREPARE and EXECUTE.

Once a prepared statement exists, it can be readied for execution using a Bind message. The Bind message gives the name of the source prepared statement (empty string denotes the unnamed prepared statement), the name of the destination portal (empty string denotes the unnamed portal), and the values to use for any parameter placeholders present in the prepared statement. The supplied parameter set must match those needed by the prepared statement. (If you declared any void parameters in the Parse message, pass NULL values for them in the Bind message.) Bind also specifies the format to use for any data returned by the query; the format can be specified overall, or per-column. The response is either BindComplete or ErrorResponse.

Note: The choice between text and binary output is determined by the format codes given in Bind, regardless of the SQL command involved. The BINARY attribute in cursor declarations is irrelevant when using extended query protocol.

Query planning for named prepared-statement objects occurs when the Parse message is processed. If a query will be repeatedly executed with different parameters, it might be beneficial to send a single Parse message containing a parameterized query, followed by multiple Bind and Execute messages. This will avoid replanning the query on each execution.

The unnamed prepared statement is likewise planned during Parse processing if the Parse message defines no parameters. But if there are parameters, query planning occurs every time Bind parameters are supplied. This allows the planner to make use of the actual values of the parameters provided by each Bind message, rather than use generic estimates.

Note: Query plans generated from a parameterized query might be less efficient than query plans generated from an equivalent query with actual parameter values substituted. The query planner cannot make decisions based on actual parameter values (for example, index selectivity) when planning a parameterized query assigned to a named prepared-statement object. This possible penalty is avoided when using the unnamed statement, since it is not planned until actual parameter values are available. The cost is that planning must occur afresh for each Bind, even if the query stays the same.

If successfully created, a named portal object lasts till the end of the current transaction, unless explicitly destroyed. An unnamed portal is destroyed at the end of the transaction, or as soon as the next Bind statement specifying the unnamed portal as destination is issued. (Note that a simple Query message also destroys the unnamed portal.) Named portals must be explicitly closed before they can be redefined by a Bind message, but this is not required for the unnamed portal. Named portals can also be created and accessed at the SQL command level, using DECLARE CURSOR and FETCH.

Once a portal exists, it can be executed using an Execute message. The Execute message specifies the portal name (empty string denotes the unnamed portal) and a maximum result-row count (zero meaning "fetch all rows"). The result-row count is only meaningful for portals containing commands that return row sets; in other cases the command is always executed to completion, and the row count is ignored. The possible responses to Execute are the same as those described above for queries issued via simple query protocol, except that Execute doesn't cause ReadyForQuery or RowDescription to be issued.

If Execute terminates before completing the execution of a portal (due to reaching a nonzero result-row count), it will send a PortalSuspended message; the appearance of this message tells the frontend that another Execute should be issued against the same portal to complete the operation. The CommandComplete message indicating completion of the source SQL command is not sent until the portal's execution is completed. Therefore, an Execute phase is always terminated by the appearance of exactly one of these messages: CommandComplete, EmptyQueryResponse (if the portal was created from an empty query string), ErrorResponse, or PortalSuspended.

At completion of each series of extended-query messages, the frontend should issue a Sync message. This parameterless message causes the backend to close the current transaction if it's not inside a BEGIN/COMMIT transaction block ("close" meaning to commit if no error, or roll back if error). Then a ReadyForQuery response is issued. The purpose of Sync is to provide a resynchronization point for error recovery. When an error is detected while processing any extended-query message, the backend issues ErrorResponse, then reads and discards messages until a Sync is reached, then issues ReadyForQuery and returns to normal message processing. (But note that no skipping occurs if an error is detected while processing Sync — this ensures that there is one and only one ReadyForQuery sent for each Sync.)

Note: Sync does not cause a transaction block opened with BEGIN to be closed. It is possible to detect this situation since the ReadyForQuery message includes transaction status information.

In addition to these fundamental, required operations, there are several optional operations that can be used with extended-query protocol.

The Describe message (portal variant) specifies the name of an existing portal (or an empty string for the unnamed portal). The response is a RowDescription message describing the rows that will be returned by executing the portal; or a NoData message if the portal does not contain a query that will return rows; or ErrorResponse if there is no such portal.

The Describe message (statement variant) specifies the name of an existing prepared statement (or an empty string for the unnamed prepared statement). The response is a ParameterDescription message describing the parameters needed by the statement, followed by a RowDescription message describing the rows that will be returned when the statement is eventually executed (or a NoData message if the statement will not return rows). ErrorResponse is issued if there is no such prepared statement. Note that since Bind has not yet been issued, the formats to be used for returned columns are not yet known to the backend; the format code fields in the RowDescription message will be zeroes in this case.

Tip: In most scenarios the frontend should issue one or the other variant of Describe before issuing Execute, to ensure that it knows how to interpret the results it will get back.

The Close message closes an existing prepared statement or portal and releases resources. It is not an error to issue Close against a nonexistent statement or portal name. The response is normally CloseComplete, but could be ErrorResponse if some difficulty is encountered while releasing resources. Note that closing a prepared statement implicitly closes any open portals that were constructed from that statement.

The Flush message does not cause any specific output to be generated, but forces the backend to deliver any data pending in its output buffers. A Flush must be sent after any extended-query command except Sync, if the frontend wishes to examine the results of that command before issuing more commands. Without Flush, messages returned by the backend will be combined into the minimum possible number of packets to minimize network overhead.

Note: The simple Query message is approximately equivalent to the series Parse, Bind, portal Describe, Execute, Close, Sync, using the unnamed prepared statement and portal objects and no parameters. One difference is that it will accept multiple SQL statements in the query string, automatically performing the bind/describe/execute sequence for each one in succession. Another difference is that it will not return ParseComplete, BindComplete, CloseComplete, or NoData messages.

46.2.4. Function Call

The Function Call sub-protocol allows the client to request a direct call of any function that exists in the database's pg_proc system catalog. The client must have execute permission for the function.

Note: The Function Call sub-protocol is a legacy feature that is probably best avoided in new code. Similar results can be accomplished by setting up a prepared statement that does SELECT function($1, ...). The Function Call cycle can then be replaced with Bind/Execute.

A Function Call cycle is initiated by the frontend sending a FunctionCall message to the backend. The backend then sends one or more response messages depending on the results of the function call, and finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it can safely send a new query or function call.

The possible response messages from the backend are:

ErrorResponse

An error has occurred.

FunctionCallResponse

The function call was completed and returned the result given in the message. (Note that the Function Call protocol can only handle a single scalar result, not a row type or set of results.)

ReadyForQuery

Processing of the function call is complete. ReadyForQuery will always be sent, whether processing terminates successfully or with an error.

NoticeResponse

A warning message has been issued in relation to the function call. Notices are in addition to other responses, i.e., the backend will continue processing the command.

46.2.5. COPY Operations

The COPY command allows high-speed bulk data transfer to or from the server. Copy-in and copy-out operations each switch the connection into a distinct sub-protocol, which lasts until the operation is completed.

Copy-in mode (data transfer to the server) is initiated when the backend executes a COPY FROM STDIN SQL statement. The backend sends a CopyInResponse message to the frontend. The frontend should then send zero or more CopyData messages, forming a stream of input data. (The message boundaries are not required to have anything to do with row boundaries, although that is often a reasonable choice.) The frontend can terminate the copy-in mode by sending either a CopyDone message (allowing successful termination) or a CopyFail message (which will cause the COPY SQL statement to fail with an error). The backend then reverts to the command-processing mode it was in before the COPY started, which will be either simple or extended query protocol. It will next send either CommandComplete (if successful) or ErrorResponse (if not).

In the event of a backend-detected error during copy-in mode (including receipt of a CopyFail message), the backend will issue an ErrorResponse message. If the COPY command was issued via an extended-query message, the backend will now discard frontend messages until a Sync message is received, then it will issue ReadyForQuery and return to normal processing. If the COPY command was issued in a simple Query message, the rest of that message is discarded and ReadyForQuery is issued. In either case, any subsequent CopyData, CopyDone, or CopyFail messages issued by the frontend will simply be dropped.

The backend will ignore Flush and Sync messages received during copy-in mode. Receipt of any other non-copy message type constitutes an error that will abort the copy-in state as described above. (The exception for Flush and Sync is for the convenience of client libraries that always send Flush or Sync after an Execute message, without checking whether the command to be executed is a COPY FROM STDIN.)

Copy-out mode (data transfer from the server) is initiated when the backend executes a COPY TO STDOUT SQL statement. The backend sends a CopyOutResponse message to the frontend, followed by zero or more CopyData messages (always one per row), followed by CopyDone. The backend then reverts to the command-processing mode it was in before the COPY started, and sends CommandComplete. The frontend cannot abort the transfer (except by closing the connection or issuing a Cancel request), but it can discard unwanted CopyData and CopyDone messages.

In the event of a backend-detected error during copy-out mode, the backend will issue an ErrorResponse message and revert to normal processing. The frontend should treat receipt of ErrorResponse as terminating the copy-out mode.

It is possible for NoticeResponse and ParameterStatus messages to be interspersed between CopyData messages; frontends must handle these cases, and should be prepared for other asynchronous message types as well (see Section 46.2.6). Otherwise, any message type other than CopyData or CopyDone may be treated as terminating copy-out mode.

The CopyInResponse and CopyOutResponse messages include fields that inform the frontend of the number of columns per row and the format codes being used for each column. (As of the present implementation, all columns in a given COPY operation will use the same format, but the message design does not assume this.)

46.2.6. Asynchronous Operations

There are several cases in which the backend will send messages that are not specifically prompted by the frontend's command stream. Frontends must be prepared to deal with these messages at any time, even when not engaged in a query. At minimum, one should check for these cases before beginning to read a query response.

It is possible for NoticeResponse messages to be generated due to outside activity; for example, if the database administrator commands a "fast" database shutdown, the backend will send a NoticeResponse indicating this fact before closing the connection. Accordingly, frontends should always be prepared to accept and display NoticeResponse messages, even when the connection is nominally idle.

ParameterStatus messages will be generated whenever the active value changes for any of the parameters the backend believes the frontend should know about. Most commonly this occurs in response to a SET SQL command executed by the frontend, and this case is effectively synchronous — but it is also possible for parameter status changes to occur because the administrator changed a configuration file and then sent the SIGHUP signal to the server. Also, if a SET command is rolled back, an appropriate ParameterStatus message will be generated to report the current effective value.

At present there is a hard-wired set of parameters for which ParameterStatus will be generated: they are server_version, server_encoding, client_encoding, application_name, is_superuser, session_authorization, DateStyle, IntervalStyle, TimeZone, integer_datetimes, and standard_conforming_strings. (server_encoding, TimeZone, and integer_datetimes were not reported by releases before 8.0; standard_conforming_strings was not reported by releases before 8.1; IntervalStyle was not reported by releases before 8.4; application_name was not reported by releases before 9.0.) Note that server_version, server_encoding and integer_datetimes are pseudo-parameters that cannot change after startup. This set might change in the future, or even become configurable. Accordingly, a frontend should simply ignore ParameterStatus for parameters that it does not understand or care about.

If a frontend issues a LISTEN command, then the backend will send a NotificationResponse message (not to be confused with NoticeResponse!) whenever a NOTIFY command is executed for the same channel name.

Note: At present, NotificationResponse can only be sent outside a transaction, and thus it will not occur in the middle of a command-response series, though it might occur just before ReadyForQuery. It is unwise to design frontend logic that assumes that, however. Good practice is to be able to accept NotificationResponse at any point in the protocol.

46.2.7. Cancelling Requests in Progress

During the processing of a query, the frontend might request cancellation of the query. The cancel request is not sent directly on the open connection to the backend for reasons of implementation efficiency: we don't want to have the backend constantly checking for new input from the frontend during query processing. Cancel requests should be relatively infrequent, so we make them slightly cumbersome in order to avoid a penalty in the normal case.

To issue a cancel request, the frontend opens a new connection to the server and sends a CancelRequest message, rather than the StartupMessage message that would ordinarily be sent across a new connection. The server will process this request and then close the connection. For security reasons, no direct reply is made to the cancel request message.

A CancelRequest message will be ignored unless it contains the same key data (PID and secret key) passed to the frontend during connection start-up. If the request matches the PID and secret key for a currently executing backend, the processing of the current query is aborted. (In the existing implementation, this is done by sending a special signal to the backend process that is processing the query.)

The cancellation signal might or might not have any effect — for example, if it arrives after the backend has finished processing the query, then it will have no effect. If the cancellation is effective, it results in the current command being terminated early with an error message.

The upshot of all this is that for reasons of both security and efficiency, the frontend has no direct way to tell whether a cancel request has succeeded. It must continue to wait for the backend to respond to the query. Issuing a cancel simply improves the odds that the current query will finish soon, and improves the odds that it will fail with an error message instead of succeeding.

Since the cancel request is sent across a new connection to the server and not across the regular frontend/backend communication link, it is possible for the cancel request to be issued by any process, not just the frontend whose query is to be canceled. This might provide additional flexibility when building multiple-process applications. It also introduces a security risk, in that unauthorized persons might try to cancel queries. The security risk is addressed by requiring a dynamically generated secret key to be supplied in cancel requests.

46.2.8. Termination

The normal, graceful termination procedure is that the frontend sends a Terminate message and immediately closes the connection. On receipt of this message, the backend closes the connection and terminates.

In rare cases (such as an administrator-commanded database shutdown) the backend might disconnect without any frontend request to do so. In such cases the backend will attempt to send an error or notice message giving the reason for the disconnection before it closes the connection.

Other termination scenarios arise from various failure cases, such as core dump at one end or the other, loss of the communications link, loss of message-boundary synchronization, etc. If either frontend or backend sees an unexpected closure of the connection, it should clean up and terminate. The frontend has the option of launching a new backend by recontacting the server if it doesn't want to terminate itself. Closing the connection is also advisable if an unrecognizable message type is received, since this probably indicates loss of message-boundary sync.

For either normal or abnormal termination, any open transaction is rolled back, not committed. One should note however that if a frontend disconnects while a non-SELECT query is being processed, the backend will probably finish the query before noticing the disconnection. If the query is outside any transaction block (BEGIN ... COMMIT sequence) then its results might be committed before the disconnection is recognized.

46.2.9. SSL Session Encryption

If PostgreSQL was built with SSL support, frontend/backend communications can be encrypted using SSL. This provides communication security in environments where attackers might be able to capture the session traffic. For more information on encrypting PostgreSQL sessions with SSL, see Section 17.8.

To initiate an SSL-encrypted connection, the frontend initially sends an SSLRequest message rather than a StartupMessage. The server then responds with a single byte containing S or N, indicating that it is willing or unwilling to perform SSL, respectively. The frontend might close the connection at this point if it is dissatisfied with the response. To continue after S, perform an SSL startup handshake (not described here, part of the SSL specification) with the server. If this is successful, continue with sending the usual StartupMessage. In this case the StartupMessage and all subsequent data will be SSL-encrypted. To continue after N, send the usual StartupMessage and proceed without encryption.

The frontend should also be prepared to handle an ErrorMessage response to SSLRequest from the server. This would only occur if the server predates the addition of SSL support to PostgreSQL. In this case the connection must be closed, but the frontend might choose to open a fresh connection and proceed without requesting SSL.

An initial SSLRequest can also be used in a connection that is being opened to send a CancelRequest message.

While the protocol itself does not provide a way for the server to force SSL encryption, the administrator can configure the server to reject unencrypted sessions as a byproduct of authentication checking.

이전 기사: 다음 기사: