算法 - 关于Python嵌套循环代码优化
ringa_lee
ringa_lee 2017-04-18 09:30:33
0
5
510

用Python实现K-means算法时候,要计算随机两个数之间的欧氏距离,数据量为5000行,但计算的时间却有500多秒,不知道有什么能优化,求指教,代码如下
循环

for i in range(len(data)):    # 计算任意两点距离和
    for j in range(i+1, len(data)):
        random_sum += ed_relate(data[i][2:], data[j][2:])

ed_relate

def ed_relate(dataX, dataY):
    '''
    :param dataX:第一行
    :param dataY: 第二行
    :return: 之间的相似度
    '''
    sum = 0
    if len(dataX) == len(dataY):
        for a in range(0, len(dataX)):
            sum += (float(dataX[a])-float(dataY[a])) ** 2
        relate = math.sqrt(sum)
        return relate
    else:
        print 'len is not equal'
        return 0

数据data

[['3', '0010000000000', '1', '1', '4', '2', '2', '2', '2', '2', '2', '2', '3', '3', '3', '4', '4', '3', '3', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0000000000010', '1', '0', '4', '2', '1', '3', '3', '2', '3', '5', '3', '2', '2', '3', '4', '2', '2', '4', '1', '1', '1', '1', '3', '2', '3', '2', '2', '3', '2', '2', '3']
['3', '0010000000000', '1', '3', '2', '3', '3', '3', '3', '2', '3', '2', '2', '2', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '3', '3', '3', '2', '2', '2', '3']
['2', '1000000000000', '2', '1', '3', '4', '2', '2', '2', '2', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '3', '2', '2', '3', '3', '2', '2', '2', '2', '3', '2', '2']
['2', '1000000000000', '1', '1', '5', '3', '3', '3', '3', '3', '3', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '3', '3', '3', '3']
['3', '0000000100000', '1', '0', '5', '2', '2', '2', '2', '3', '2', '2', '2', '3', '2', '2', '2', '2', '2', '2', '2', '3', '2', '2', '2', '3', '2', '2', '2', '2', '3', '3', '2']
['3', '0000000100000', '1', '0', '4', '2', '3', '3', '3', '2', '2', '2', '2', '2', '2', '1', '1', '2', '2', '2', '2', '4', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0010000000000', '2', '1', '3', '4', '2', '2', '3', '2', '2', '2', '2', '2', '3', '2', '2', '2', '3', '2', '2', '2', '3', '2', '2', '2', '3', '2', '2', '3', '2', '2', '3']
['3', '0000010000000', '1', '1', '3', '2', '2', '2', '3', '2', '2', '2', '2', '2', '3', '2', '2', '3', '2', '4', '2', '2', '3', '2', '2', '2', '2', '2', '2', '2', '2', '3', '2']
['3', '0010000000000', '3', '1', '4', '3', '3', '3', '4', '3', '3', '2', '3', '3', '2', '1', '1', '1', '4', '4', '4', '4', '4', '4', '3', '1', '1', '1', '1', '1', '1', '1', '1']
['1', '0100000000000', '3', '4', '1', '2', '3', '4', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '4', '2', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['2', '0000000000100', '1', '2', '3', '4', '3', '2', '3', '1', '2', '2', '2', '2', '2', '2', '2', '4', '2', '2', '2', '3', '3', '2', '3', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0000000000010', '1', '3', '3', '2', '2', '3', '2', '3', '3', '3', '3', '3', '2', '3', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['1', '0100000000000', '1', '1', '3', '2', '3', '3', '3', '2', '3', '3', '3', '3', '3', '3', '2', '1', '1', '3', '2', '2', '3', '1', '1', '1', '1', '1', '2', '3', '3', '1', '2']
['1', '0100000000000', '1', '2', '4', '3', '3', '3', '3', '3', '3', '3', '3', '3', '3', '3', '3', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0000000100000', '1', '1', '3', '3', '3', '2', '4', '4', '4', '4', '4', '2', '2', '1', '1', '3', '3', '4', '3', '4', '3', '1', '2', '1', '1', '1', '2', '2', '1', '1', '1']
['3', '0010000000000', '1', '2', '3', '3', '3', '2', '2', '2', '2', '3', '2', '2', '2', '2', '3', '2', '2', '3', '3', '3', '2', '2', '2', '2', '3', '3', '3', '2', '2', '2', '2']
['3', '0000010000000', '1', '1', '5', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0000010000000', '1', '1', '5', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']
['3', '0000000100000', '1', '4', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', '2']]
只给出了前20行
ringa_lee
ringa_lee

ringa_lee

모든 응답(5)
刘奇

문제는 유클리드 거리를 계산하는 데 사용되는 두 개의 부동 소수점에 있습니다.
sum += (float(dataX[a])-float(dataY[a])) ** 2
계산하기 전에 먼저 모든 데이터를 int로 변환합니다
data = [[int(x) for x in row] for row in data]
. , 속도가 10배 향상됩니다

小葫芦

으아악

테스트되지 않았으므로 일부 성능이 향상될 것입니다.

伊谢尔伦

기존 코드에 큰 문제가 없는 것을 보고 계산을 1,000번 반복했는데, 이는 대략 20,000개의 데이터에 해당하며 시간은 4.4초입니다.
문제가 어디에 있는지 알아보려면 프로필을 작성하는 것이 좋습니다.

迷茫

성능 측면에서 이보다 더 좋은 방법은 없는 것 같지만 다음과 같이 이중 루프를 더 우아하게 작성할 수 있다고 생각합니다.

으아악
阿神

numpy와 pandas 사용

최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿
회사 소개 부인 성명 Sitemap
PHP 중국어 웹사이트:공공복지 온라인 PHP 교육,PHP 학습자의 빠른 성장을 도와주세요!