thinkphp3.2.2前后台公用类架构问题分析
这篇文章主要介绍了thinkphp3.2.2前后台公用类架构问题,以实例形式较为详细的分析了前后台公用类的简单调用方法,非常具有实用价值,需要的朋友可以参考下
本文实例分析了thinkphp3.2.2前后台公用类架构问题。分享给大家供大家参考。具体分析如下:
3.13之前好多项目都使用前后台公用类,在lib/action下创建Baseaction做为公共继承类,发现3.2.2里面很多人都用A调用,这样每用一次要用A调用,,好麻烦,小编特意偷懒。亲测使用以下方法解决。感兴趣的朋友可以对其进行加强改进!
thinkphp3.2.2的这么创建Application/Common/Controller/BaseController.class.php
复制代码 代码如下:
namespace Common\Controller;
use Think\Controller;
/**
* 前后台公用基类
* modify author : Jack
* modify time : 2014-7-12
*/
class BaseController extends Controller{
public function _initialize() {//全局变量
dump('基类');
$this->cfg();
}
}
在Home/Controller/ZixunController.class.php中
复制代码 代码如下:
namespace Home\Controller;
use Common\Controller\BaseController;
class ZixunController extends BaseController {
public function index() {
$result = $this->lists();
dump($result);
}
}
当然,在前后台还可以创建自己的基类,比如后台建AdminController.class.php继承BaseController.class.php,前台创建HomeController.class.php继承BaseController.class.php各自模块继承各自的基类,这样项目可以更清晰,可以避免重复造轮子,省很多事情,但是必须注意的是每个类必须声明命名空间,但是使用的资源可以在各自的基类中定义之后后面不用在写一次。比如AdminController.class.php继承BaseController.class.php,就不用再写use Think\Controller了,直接使用use Common\Controller\BaseController就可以了。
希望本文所述对大家的ThinkPHP框架程序设计有所帮助。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



SpringDataJPA adalah berdasarkan seni bina JPA dan berinteraksi dengan pangkalan data melalui pemetaan, ORM dan pengurusan transaksi. Repositorinya menyediakan operasi CRUD, dan pertanyaan terbitan memudahkan akses pangkalan data. Selain itu, ia menggunakan pemuatan malas untuk hanya mendapatkan semula data apabila perlu, sekali gus meningkatkan prestasi.

Alamat kertas: https://arxiv.org/abs/2307.09283 Alamat kod: https://github.com/THU-MIG/RepViTRepViT berprestasi baik dalam seni bina ViT mudah alih dan menunjukkan kelebihan yang ketara. Seterusnya, kami meneroka sumbangan kajian ini. Disebutkan dalam artikel bahawa ViT ringan biasanya berprestasi lebih baik daripada CNN ringan pada tugas visual, terutamanya disebabkan oleh modul perhatian diri berbilang kepala (MSHA) mereka yang membolehkan model mempelajari perwakilan global. Walau bagaimanapun, perbezaan seni bina antara ViT ringan dan CNN ringan belum dikaji sepenuhnya. Dalam kajian ini, penulis menyepadukan ViT ringan ke dalam yang berkesan

Masalah penilaian kesan pengelompokan dalam algoritma pengelompokan memerlukan contoh kod khusus Pengelompokan ialah kaedah pembelajaran tanpa pengawasan yang mengelompokkan sampel yang serupa ke dalam satu kategori dengan mengelompokkan data. Dalam algoritma pengelompokan, cara menilai kesan pengelompokan adalah isu penting. Artikel ini akan memperkenalkan beberapa penunjuk penilaian kesan pengelompokan yang biasa digunakan dan memberikan contoh kod yang sepadan. 1. Indeks penilaian kesan pengelompokan Pekali Siluet Pekali siluet menilai kesan pengelompokan dengan mengira kehampiran sampel dan tahap pemisahan daripada kelompok lain.

Keluk pembelajaran seni bina rangka kerja Go bergantung pada kebiasaan dengan bahasa Go dan pembangunan bahagian belakang serta kerumitan rangka kerja yang dipilih: pemahaman yang baik tentang asas bahasa Go. Ia membantu untuk mempunyai pengalaman pembangunan bahagian belakang. Rangka kerja yang berbeza dalam kerumitan membawa kepada perbezaan dalam keluk pembelajaran.

Dikenali dengan prestasi yang berkuasa dan ciri serba boleh, iPhone tidak terlepas daripada cegukan atau kesukaran teknikal sekali-sekala, ciri biasa di kalangan peranti elektronik yang kompleks. Mengalami masalah iPhone boleh mengecewakan, tetapi biasanya penggera tidak diperlukan. Dalam panduan komprehensif ini, kami menyasarkan untuk menyahmistifikasi beberapa cabaran yang paling biasa dihadapi yang berkaitan dengan penggunaan iPhone. Pendekatan langkah demi langkah kami direka untuk membantu anda menyelesaikan isu lazim ini, menyediakan penyelesaian praktikal dan petua penyelesaian masalah untuk mengembalikan peralatan anda dalam keadaan berfungsi terbaik. Sama ada anda menghadapi masalah atau isu yang lebih kompleks, artikel ini boleh membantu anda menyelesaikannya dengan berkesan. Petua Penyelesaian Masalah Umum Sebelum menyelidiki langkah penyelesaian masalah khusus, berikut adalah beberapa yang berguna

Untuk menyelesaikan masalah yang jQuery.val() tidak boleh digunakan, contoh kod khusus diperlukan Untuk pembangun bahagian hadapan, menggunakan jQuery ialah salah satu operasi biasa. Antaranya, menggunakan kaedah .val() untuk mendapatkan atau menetapkan nilai elemen borang adalah operasi yang sangat biasa. Walau bagaimanapun, dalam beberapa kes tertentu, masalah tidak dapat menggunakan kaedah .val() mungkin timbul. Artikel ini akan memperkenalkan beberapa situasi dan penyelesaian biasa, serta memberikan contoh kod khusus. Penerangan Masalah Apabila menggunakan jQuery untuk membangunkan halaman hadapan, kadangkala anda akan menghadapi

1. Seni Bina Llama3 Dalam siri artikel ini, kami melaksanakan llama3 dari awal. Keseluruhan seni bina Llama3: Gambarkan parameter model Llama3: Mari kita lihat nilai sebenar parameter ini dalam model Llama3. Gambar [1] Tetingkap konteks (tetingkap konteks) Apabila membuat instantiated kelas LlaMa, pembolehubah max_seq_len mentakrifkan tetingkap konteks. Terdapat parameter lain dalam kelas, tetapi parameter ini paling berkaitan secara langsung dengan model pengubah. Maks_seq_len di sini ialah 8K. Gambar [2] Saiz perbendaharaan kata dan PerhatianL

Ditulis di atas & pemahaman peribadi pengarang: Baru-baru ini, dengan perkembangan dan penemuan teknologi pembelajaran mendalam, model asas berskala besar (Model Asas) telah mencapai hasil yang ketara dalam bidang pemprosesan bahasa semula jadi dan penglihatan komputer. Aplikasi model asas dalam pemanduan autonomi juga mempunyai prospek pembangunan yang hebat, yang boleh meningkatkan pemahaman dan penaakulan senario. Melalui pra-latihan tentang bahasa yang kaya dan data visual, model asas boleh memahami dan mentafsir pelbagai elemen dalam senario pemanduan autonomi dan melakukan penaakulan, menyediakan arahan bahasa dan tindakan untuk memacu membuat keputusan dan perancangan. Model asas boleh ditambah data dengan pemahaman senario pemanduan untuk menyediakan ciri-ciri yang jarang berlaku dalam pengedaran ekor panjang yang tidak mungkin ditemui semasa pemanduan rutin dan pengumpulan data.
