基于两两交互张量分解模型的个性化标签推荐
基于PITF的个性化标签推荐 摘要 关键词 引言 相关工作 个性化标签推荐 非个性化标签推荐 张量分解模型 成对交互模型 个性化标签推荐 形式化定义 数据分析 标签推荐的贝叶斯个性化排序BPR BPR最优化准则 BPR学习算法 张量分解模型 塔克分解模型TDTF 规范化分
- 基于PITF的个性化标签推荐
- 摘要
- 关键词
- 引言
- 相关工作
- 个性化标签推荐
- 非个性化标签推荐
- 张量分解模型
- 成对交互模型
- 个性化标签推荐
- 形式化定义
- 数据分析
- 标签推荐的贝叶斯个性化排序BPR
- BPR最优化准则
- BPR学习算法
- 张量分解模型
- 塔克分解模型TDTF
- 规范化分解模型CDTF
- 成对交互张量分解模型PITF
- TDCD和PITF之间的关系
- 实验评价
- 数据集
- 评价方法
- 实验结果
- 学习运行时间
- 预测质量
- ECMLPKDD 2009知识发现挑战赛
- 结论和未来工作
基于PITF的个性化标签推荐
摘要
在很多最近的网站中,标签扮演了一个重要的角色。推荐系统在用户想要给某个产品打标签时向其推荐他可能会使用的标签。基于Tucker分解(TD)模型的分解模型已经显示出了较高的性能,其标签推荐质量优于其它方法如PageRank,FolkRank和协同过滤等等。TD模型的问题在于三次核张量会导致在预测和学习时候的三次方的时间复杂度。
本文我们给出分解模型PITF(Pairwise Interaction Tensor Factorization,成对交互张量分解),这是一种特殊的TD模型,但是在学习和预测时的时间复杂度是线性的。PITF可以对用户、产品和标签之间的两两交互进行准确建模。之前用于产品推荐的贝叶斯个性化排序(BPR)准则被用于学习该模型。在真实数据集上的实验表明PITF模型在运算时间上远远优于传统TD模型,甚至能得到更好的预测精度。除了本文的实验外,PITF还赢得了ECML/PKDD 2009知识发现竞赛中基于图的标签推荐的奖项。
关键词
标签推荐,张量分解,个性化,推荐系统
引言
标签是Web 2.0时代的一个重要特征。它允许用户给产品/资源如音乐,图片和书签用关键词进行注释。标签帮助用户组织他的项目,促进浏览和搜索行为。标签推荐系统通过向用户推荐他可能用于一件产品的标签集合从而辅助用户的标记过程。个性化标签系统在推荐时会考虑到用户过去的标记行为。这意味着每个用户都被推荐一个个性化标签列表:也就是推荐的标签列表取决于用户和产品。由于不同的用户会使用不同的标签标记同一个项目因此需要进行个性化。Last.fm网站使用的是非个性化标签推荐系统,但是用户还是会使用不同的标签标记音乐。文献[18]给出了一个实证例子,表明最近的个性化标签推荐系统优于任何非个性化标签推荐系统的理论上的性能上限。
本文工作基于最近的使用分解模型的个性化标签推荐模型。这些模型如高维奇异值分解(HOSVD)和排序张量分解(RTF)都是基于Tucker分解模型。RTF已经表现出了很高的预测精度。使用完全Tucker分解模型的缺陷在于在分解维度上模型方程是三次方的。这使得TD模型较难应用于中等规模和大型数据集。本文我们介绍一种新的分解模型,该模型对用户、产品和标签之间的两两交互关系进行准确建模。该摸想的优势在于模型的计算复杂度是线性的,使得其可以在高维数据上进行计算。在统计学中,还有另外一种张量分解方法也有着线性的计算复杂度称作正规分解(canonical decomposition, CD),也称作并行因子分析(parallel factor analysis, PARAFAC)[2]。后面我们会说明我们的模型是CD和TD模型的特例。我们的实验结果也表明我们的两两交互模型在预测精度上明显优于CD模型,在运行时间上也略优于CD。此外,为了学习一般化的标签推荐模型,我们将贝叶斯个性化排序优化准则进行改进以适应标签推荐。
总体上,我们的贡献在于以下几点:
1. 我们将贝叶斯个性化排序优化准则(BPR-OPT)[17]进行了扩展以适应标签任务,并提供了一个基于bootstrap抽样的随机梯度下降学习算法。该优化准则和学习算法是通用的而不限于TD分解模型。
2. 我们提出的PTTF分解模型有着线性的预测时间复杂度,并分析了PITF模型与一般的Tucker分解模型和正规化分解模型之间的关系。
3. 我们的实验表明我们的BPR-PITF模型的性能在运行时间上优于预测质量最高的方法RTF-TF,计算复杂度从
相关工作
个性化标签推荐
个性化标签推荐是推荐系统中近来的一个热门话题。Hotho等人便引进了PageRank的改进版本FolkRank[5]。
非个性化标签推荐
张量分解模型
成对交互模型
个性化标签推荐
个性化标签推荐是给用户推荐一个用于注释(如,描述)某件产品的标签列表。例如,在一个音乐网站上,一个听众(用户)想要给一首音乐(产品)打上标签,系统给他推荐了他可能想要用于标记这首歌的关键词列表。为了推断这个列表,一个个性化标签推荐系统可以使用系统中的历史数据也就是过去的标记行为。例如,推荐系统可以利用用户过去给相似的产品打过的标签,或者更一般化地,利用相似用户给相似产品打过的相似标签。
形式化定义
为了形式化描述个性化标签推荐问题,我们使用[18]中的数学符号:
对给定帖子
这意味着排序
其中(1)式为总体性,(2)为反对称性,(3)为传递性。本文所有模型都是预测一个评分函数

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

AI memang mengubah matematik. Baru-baru ini, Tao Zhexuan, yang telah mengambil perhatian terhadap isu ini, telah memajukan keluaran terbaru "Buletin Persatuan Matematik Amerika" (Buletin Persatuan Matematik Amerika). Memfokuskan pada topik "Adakah mesin akan mengubah matematik?", ramai ahli matematik menyatakan pendapat mereka Seluruh proses itu penuh dengan percikan api, tegar dan menarik. Penulis mempunyai barisan yang kuat, termasuk pemenang Fields Medal Akshay Venkatesh, ahli matematik China Zheng Lejun, saintis komputer NYU Ernest Davis dan ramai lagi sarjana terkenal dalam industri. Dunia AI telah berubah secara mendadak Anda tahu, banyak artikel ini telah dihantar setahun yang lalu.

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Boston Dynamics Atlas secara rasmi memasuki era robot elektrik! Semalam, Atlas hidraulik hanya "menangis" menarik diri daripada peringkat sejarah Hari ini, Boston Dynamics mengumumkan bahawa Atlas elektrik sedang berfungsi. Nampaknya dalam bidang robot humanoid komersial, Boston Dynamics berazam untuk bersaing dengan Tesla. Selepas video baharu itu dikeluarkan, ia telah pun ditonton oleh lebih sejuta orang dalam masa sepuluh jam sahaja. Orang lama pergi dan peranan baru muncul. Ini adalah keperluan sejarah. Tidak dinafikan bahawa tahun ini adalah tahun letupan robot humanoid. Netizen mengulas: Kemajuan robot telah menjadikan majlis pembukaan tahun ini kelihatan seperti manusia, dan tahap kebebasan adalah jauh lebih besar daripada manusia Tetapi adakah ini benar-benar bukan filem seram? Pada permulaan video, Atlas berbaring dengan tenang di atas tanah, seolah-olah terlentang. Apa yang berikut adalah rahang-jatuh

Prestasi JAX, yang dipromosikan oleh Google, telah mengatasi Pytorch dan TensorFlow dalam ujian penanda aras baru-baru ini, menduduki tempat pertama dalam 7 penunjuk. Dan ujian tidak dilakukan pada TPU dengan prestasi JAX terbaik. Walaupun dalam kalangan pembangun, Pytorch masih lebih popular daripada Tensorflow. Tetapi pada masa hadapan, mungkin lebih banyak model besar akan dilatih dan dijalankan berdasarkan platform JAX. Model Baru-baru ini, pasukan Keras menanda aras tiga hujung belakang (TensorFlow, JAX, PyTorch) dengan pelaksanaan PyTorch asli dan Keras2 dengan TensorFlow. Pertama, mereka memilih satu set arus perdana

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh

Pengesanan objek ialah masalah yang agak matang dalam sistem pemanduan autonomi, antaranya pengesanan pejalan kaki adalah salah satu algoritma terawal untuk digunakan. Penyelidikan yang sangat komprehensif telah dijalankan dalam kebanyakan kertas kerja. Walau bagaimanapun, persepsi jarak menggunakan kamera fisheye untuk pandangan sekeliling agak kurang dikaji. Disebabkan herotan jejari yang besar, perwakilan kotak sempadan standard sukar dilaksanakan dalam kamera fisheye. Untuk mengurangkan perihalan di atas, kami meneroka kotak sempadan lanjutan, elips dan reka bentuk poligon am ke dalam perwakilan kutub/sudut dan mentakrifkan metrik mIOU pembahagian contoh untuk menganalisis perwakilan ini. Model fisheyeDetNet yang dicadangkan dengan bentuk poligon mengatasi model lain dan pada masa yang sama mencapai 49.5% mAP pada set data kamera fisheye Valeo untuk pemanduan autonomi

Kon cahaya Huang Quan secara berkesan boleh meningkatkan kerosakan pukulan kritikal watak dan kuasa serangan dalam pertempuran Kon cahaya yang disyorkan oleh Huang Quan ialah: Berjalan di Pantai yang Berlalu, Selamat Malam dan Wajah Tertidur, Hujan Terus Berjatuhan, Tunggu Saja, dan Keazaman Seperti Manik. daripada Sweat Shine, di bawah editor akan membawakan anda cadangan untuk Underworld Light Cone of the Collapsed Star Dome Railway. Cadangan Kon Cahaya Huangquan 1. Berjalan di atas Tebing Laluan 1. Senjata khas Huangquan boleh meningkatkan kerosakan letupan Menyerang musuh boleh meletakkan musuh ke dalam keadaan negatif gelembung, yang meningkatkan kerosakan yang disebabkan oleh langkah penyudah Terdapat kedua-dua keadaan negatif dan Kerosakan meningkat, ia harus dikatakan bahawa ia adalah senjata khas. 2. Kon cahaya eksklusif adalah sangat unik di antara banyak kon cahaya halus Ia secara langsung meningkatkan kerosakan langsung, mempunyai kerosakan yang tinggi dan meningkatkan sifat kerosakan kritikal. 3. Bukan itu sahaja, kon cahaya juga memberikan kesan status negatif, yang boleh menyebabkan Huangquan sendiri bertindak balas.
