Hive分析窗口函数(四) LAG,LEAD,FIRST_VALUE,LAST_VALUE
1.LAG功能是什么? 2.LEAD与LAG功能有什么相的地方那个? 3.FIRST_VALUE与LAST_VALUE分别完成什么功能? 继续学习这四个分析函数。注意: 这几个函数不支持WINDOW子句。 Hive版本为 apache-hive-0.13.1 数据准备: 水电费 cookie1,2015-04-10 10:00:02,url2
1.LAG功能是什么?2.LEAD与LAG功能有什么相似的地方那个?
3.FIRST_VALUE与LAST_VALUE分别完成什么功能?
继续学习这四个分析函数。 注意: 这几个函数不支持WINDOW子句。 Hive版本为 apache-hive-0.13.1 数据准备:
水电费
cookie1,2015-04-10 10:00:02,url2 cookie1,2015-04-10 10:00:00,url1 cookie1,2015-04-10 10:03:04,1url3 cookie1,2015-04-10 10:50:05,url6 cookie1,2015-04-10 11:00:00,url7 cookie1,2015-04-10 10:10:00,url4 cookie1,2015-04-10 10:50:01,url5 cookie2,2015-04-10 10:00:02,url22 cookie2,2015-04-10 10:00:00,url11 cookie2,2015-04-10 10:03:04,1url33 cookie2,2015-04-10 10:50:05,url66 cookie2,2015-04-10 11:00:00,url77 cookie2,2015-04-10 10:10:00,url44 cookie2,2015-04-10 10:50:01,url55 CREATE EXTERNAL TABLE lxw1234 ( cookieid string, createtime string, --页面访问时间 url STRING --被访问页面 ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' stored as textfile location '/tmp/lxw11/'; hive> select * from lxw1234; OK cookie1 2015-04-10 10:00:02 url2 cookie1 2015-04-10 10:00:00 url1 cookie1 2015-04-10 10:03:04 1url3 cookie1 2015-04-10 10:50:05 url6 cookie1 2015-04-10 11:00:00 url7 cookie1 2015-04-10 10:10:00 url4 cookie1 2015-04-10 10:50:01 url5 cookie2 2015-04-10 10:00:02 url22 cookie2 2015-04-10 10:00:00 url11 cookie2 2015-04-10 10:03:04 1url33 cookie2 2015-04-10 10:50:05 url66 cookie2 2015-04-10 11:00:00 url77 cookie2 2015-04-10 10:10:00 url44 cookie2 2015-04-10 10:50:01 url55
LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值
第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time, LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time FROM lxw1234; cookieid createtime url rn last_1_time last_2_time ------------------------------------------------------------------------------------------- cookie1 2015-04-10 10:00:00 url1 1 1970-01-01 00:00:00 NULL cookie1 2015-04-10 10:00:02 url2 2 2015-04-10 10:00:00 NULL cookie1 2015-04-10 10:03:04 1url3 3 2015-04-10 10:00:02 2015-04-10 10:00:00 cookie1 2015-04-10 10:10:00 url4 4 2015-04-10 10:03:04 2015-04-10 10:00:02 cookie1 2015-04-10 10:50:01 url5 5 2015-04-10 10:10:00 2015-04-10 10:03:04 cookie1 2015-04-10 10:50:05 url6 6 2015-04-10 10:50:01 2015-04-10 10:10:00 cookie1 2015-04-10 11:00:00 url7 7 2015-04-10 10:50:05 2015-04-10 10:50:01 cookie2 2015-04-10 10:00:00 url11 1 1970-01-01 00:00:00 NULL cookie2 2015-04-10 10:00:02 url22 2 2015-04-10 10:00:00 NULL cookie2 2015-04-10 10:03:04 1url33 3 2015-04-10 10:00:02 2015-04-10 10:00:00 cookie2 2015-04-10 10:10:00 url44 4 2015-04-10 10:03:04 2015-04-10 10:00:02 cookie2 2015-04-10 10:50:01 url55 5 2015-04-10 10:10:00 2015-04-10 10:03:04 cookie2 2015-04-10 10:50:05 url66 6 2015-04-10 10:50:01 2015-04-10 10:10:00 cookie2 2015-04-10 11:00:00 url77 7 2015-04-10 10:50:05 2015-04-10 10:50:01 last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00' cookie1第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00 cookie1第三行,往上1行值为第二行值,2015-04-10 10:00:02 cookie1第六行,往上1行值为第五行值,2015-04-10 10:50:01 last_2_time: 指定了往上第2行的值,为指定默认值 cookie1第一行,往上2行为NULL cookie1第二行,往上2行为NULL cookie1第四行,往上2行为第二行值,2015-04-10 10:00:02 cookie1第七行,往上2行为第五行值,2015-04-10 10:50:01
LEAD
与LAG相反
LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值
第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time, LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time FROM lxw1234; cookieid createtime url rn next_1_time next_2_time ------------------------------------------------------------------------------------------- cookie1 2015-04-10 10:00:00 url1 1 2015-04-10 10:00:02 2015-04-10 10:03:04 cookie1 2015-04-10 10:00:02 url2 2 2015-04-10 10:03:04 2015-04-10 10:10:00 cookie1 2015-04-10 10:03:04 1url3 3 2015-04-10 10:10:00 2015-04-10 10:50:01 cookie1 2015-04-10 10:10:00 url4 4 2015-04-10 10:50:01 2015-04-10 10:50:05 cookie1 2015-04-10 10:50:01 url5 5 2015-04-10 10:50:05 2015-04-10 11:00:00 cookie1 2015-04-10 10:50:05 url6 6 2015-04-10 11:00:00 NULL cookie1 2015-04-10 11:00:00 url7 7 1970-01-01 00:00:00 NULL cookie2 2015-04-10 10:00:00 url11 1 2015-04-10 10:00:02 2015-04-10 10:03:04 cookie2 2015-04-10 10:00:02 url22 2 2015-04-10 10:03:04 2015-04-10 10:10:00 cookie2 2015-04-10 10:03:04 1url33 3 2015-04-10 10:10:00 2015-04-10 10:50:01 cookie2 2015-04-10 10:10:00 url44 4 2015-04-10 10:50:01 2015-04-10 10:50:05 cookie2 2015-04-10 10:50:01 url55 5 2015-04-10 10:50:05 2015-04-10 11:00:00 cookie2 2015-04-10 10:50:05 url66 6 2015-04-10 11:00:00 NULL cookie2 2015-04-10 11:00:00 url77 7 1970-01-01 00:00:00 NULL --逻辑与LAG一样,只不过LAG是往上,LEAD是往下。
FIRST_VALUE
取分组内排序后,截止到当前行,第一个值
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1 FROM lxw1234; cookieid createtime url rn first1 --------------------------------------------------------- cookie1 2015-04-10 10:00:00 url1 1 url1 cookie1 2015-04-10 10:00:02 url2 2 url1 cookie1 2015-04-10 10:03:04 1url3 3 url1 cookie1 2015-04-10 10:10:00 url4 4 url1 cookie1 2015-04-10 10:50:01 url5 5 url1 cookie1 2015-04-10 10:50:05 url6 6 url1 cookie1 2015-04-10 11:00:00 url7 7 url1 cookie2 2015-04-10 10:00:00 url11 1 url11 cookie2 2015-04-10 10:00:02 url22 2 url11 cookie2 2015-04-10 10:03:04 1url33 3 url11 cookie2 2015-04-10 10:10:00 url44 4 url11 cookie2 2015-04-10 10:50:01 url55 5 url11 cookie2 2015-04-10 10:50:05 url66 6 url11 cookie2 2015-04-10 11:00:00 url77 7 url11
LAST_VALUE
取分组内排序后,截止到当前行,最后一个值
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1 FROM lxw1234; cookieid createtime url rn last1 ----------------------------------------------------------------- cookie1 2015-04-10 10:00:00 url1 1 url1 cookie1 2015-04-10 10:00:02 url2 2 url2 cookie1 2015-04-10 10:03:04 1url3 3 1url3 cookie1 2015-04-10 10:10:00 url4 4 url4 cookie1 2015-04-10 10:50:01 url5 5 url5 cookie1 2015-04-10 10:50:05 url6 6 url6 cookie1 2015-04-10 11:00:00 url7 7 url7 cookie2 2015-04-10 10:00:00 url11 1 url11 cookie2 2015-04-10 10:00:02 url22 2 url22 cookie2 2015-04-10 10:03:04 1url33 3 1url33 cookie2 2015-04-10 10:10:00 url44 4 url44 cookie2 2015-04-10 10:50:01 url55 5 url55 cookie2 2015-04-10 10:50:05 url66 6 url66 cookie2 2015-04-10 11:00:00 url77 7 url77
如果不指定ORDER BY,则默认按照记录在文件中的偏移量进行排序,会出现错误的结果
SELECT cookieid, createtime, url, FIRST_VALUE(url) OVER(PARTITION BY cookieid) AS first2 FROM lxw1234; cookieid createtime url first2 ---------------------------------------------- cookie1 2015-04-10 10:00:02 url2 url2 cookie1 2015-04-10 10:00:00 url1 url2 cookie1 2015-04-10 10:03:04 1url3 url2 cookie1 2015-04-10 10:50:05 url6 url2 cookie1 2015-04-10 11:00:00 url7 url2 cookie1 2015-04-10 10:10:00 url4 url2 cookie1 2015-04-10 10:50:01 url5 url2 cookie2 2015-04-10 10:00:02 url22 url22 cookie2 2015-04-10 10:00:00 url11 url22 cookie2 2015-04-10 10:03:04 1url33 url22 cookie2 2015-04-10 10:50:05 url66 url22 cookie2 2015-04-10 11:00:00 url77 url22 cookie2 2015-04-10 10:10:00 url44 url22 cookie2 2015-04-10 10:50:01 url55 url22 SELECT cookieid, createtime, url, LAST_VALUE(url) OVER(PARTITION BY cookieid) AS last2 FROM lxw1234; cookieid createtime url last2 ---------------------------------------------- cookie1 2015-04-10 10:00:02 url2 url5 cookie1 2015-04-10 10:00:00 url1 url5 cookie1 2015-04-10 10:03:04 1url3 url5 cookie1 2015-04-10 10:50:05 url6 url5 cookie1 2015-04-10 11:00:00 url7 url5 cookie1 2015-04-10 10:10:00 url4 url5 cookie1 2015-04-10 10:50:01 url5 url5 cookie2 2015-04-10 10:00:02 url22 url55 cookie2 2015-04-10 10:00:00 url11 url55 cookie2 2015-04-10 10:03:04 1url33 url55 cookie2 2015-04-10 10:50:05 url66 url55 cookie2 2015-04-10 11:00:00 url77 url55 cookie2 2015-04-10 10:10:00 url44 url55 cookie2 2015-04-10 10:50:01 url55 url55
如果想要取分组内排序后最后一个值,则需要变通一下:
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1, FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2 FROM lxw1234 ORDER BY cookieid,createtime; cookieid createtime url rn last1 last2 ------------------------------------------------------------- cookie1 2015-04-10 10:00:00 url1 1 url1 url7 cookie1 2015-04-10 10:00:02 url2 2 url2 url7 cookie1 2015-04-10 10:03:04 1url3 3 1url3 url7 cookie1 2015-04-10 10:10:00 url4 4 url4 url7 cookie1 2015-04-10 10:50:01 url5 5 url5 url7 cookie1 2015-04-10 10:50:05 url6 6 url6 url7 cookie1 2015-04-10 11:00:00 url7 7 url7 url7 cookie2 2015-04-10 10:00:00 url11 1 url11 url77 cookie2 2015-04-10 10:00:02 url22 2 url22 url77 cookie2 2015-04-10 10:03:04 1url33 3 1url33 url77 cookie2 2015-04-10 10:10:00 url44 4 url44 url77 cookie2 2015-04-10 10:50:01 url55 5 url55 url77 cookie2 2015-04-10 10:50:05 url66 6 url66 url77 cookie2 2015-04-10 11:00:00 url77 7 url77 url77

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas





Bahasa Go menyediakan dua teknologi penciptaan fungsi dinamik: penutupan dan refleksi. penutupan membenarkan akses kepada pembolehubah dalam skop penutupan, dan refleksi boleh mencipta fungsi baharu menggunakan fungsi FuncOf. Teknologi ini berguna dalam menyesuaikan penghala HTTP, melaksanakan sistem yang sangat boleh disesuaikan dan membina komponen boleh pasang.

Dalam penamaan fungsi C++, adalah penting untuk mempertimbangkan susunan parameter untuk meningkatkan kebolehbacaan, mengurangkan ralat dan memudahkan pemfaktoran semula. Konvensyen susunan parameter biasa termasuk: tindakan-objek, objek-tindakan, makna semantik dan pematuhan perpustakaan standard. Susunan optimum bergantung pada tujuan fungsi, jenis parameter, kemungkinan kekeliruan dan konvensyen bahasa.

Kunci untuk menulis fungsi Java yang cekap dan boleh diselenggara ialah: pastikan ia mudah. Gunakan penamaan yang bermakna. Mengendalikan situasi khas. Gunakan keterlihatan yang sesuai.

1. Fungsi SUM digunakan untuk menjumlahkan nombor dalam lajur atau sekumpulan sel, contohnya: =SUM(A1:J10). 2. Fungsi AVERAGE digunakan untuk mengira purata nombor dalam lajur atau sekumpulan sel, contohnya: =AVERAGE(A1:A10). 3. Fungsi COUNT, digunakan untuk mengira bilangan nombor atau teks dalam lajur atau sekumpulan sel, contohnya: =COUNT(A1:A10) 4. Fungsi IF, digunakan untuk membuat pertimbangan logik berdasarkan syarat yang ditentukan dan mengembalikan hasil yang sepadan.

Kelebihan parameter lalai dalam fungsi C++ termasuk memudahkan panggilan, meningkatkan kebolehbacaan dan mengelakkan ralat. Kelemahannya ialah fleksibiliti terhad dan sekatan penamaan. Kelebihan parameter variadic termasuk fleksibiliti tanpa had dan pengikatan dinamik. Kelemahan termasuk kerumitan yang lebih besar, penukaran jenis tersirat dan kesukaran dalam penyahpepijatan.

Faedah fungsi mengembalikan jenis rujukan dalam C++ termasuk: Peningkatan prestasi: Melewati rujukan mengelakkan penyalinan objek, sekali gus menjimatkan memori dan masa. Pengubahsuaian langsung: Pemanggil boleh mengubah suai secara langsung objek rujukan yang dikembalikan tanpa menugaskannya semula. Kesederhanaan kod: Lulus melalui rujukan memudahkan kod dan tidak memerlukan operasi penugasan tambahan.

Perbezaan antara fungsi PHP tersuai dan fungsi yang dipratentukan ialah: Skop: Fungsi tersuai terhad kepada skop definisinya, manakala fungsi yang dipratentukan boleh diakses di seluruh skrip. Cara mentakrifkan: Fungsi tersuai ditakrifkan menggunakan kata kunci fungsi, manakala fungsi yang dipratakrifkan ditakrifkan oleh kernel PHP. Lulus parameter: Fungsi tersuai menerima parameter, manakala fungsi yang dipratentukan mungkin tidak memerlukan parameter. Kebolehlanjutan: Fungsi tersuai boleh dibuat mengikut keperluan, manakala fungsi yang dipratentukan terbina dalam dan tidak boleh diubah suai.

Pengendalian pengecualian dalam C++ boleh dipertingkatkan melalui kelas pengecualian tersuai yang menyediakan mesej ralat khusus, maklumat kontekstual dan melaksanakan tindakan tersuai berdasarkan jenis ralat. Tentukan kelas pengecualian yang diwarisi daripada std::exception untuk memberikan maklumat ralat tertentu. Gunakan kata kunci lontaran untuk membuang pengecualian tersuai. Gunakan dynamic_cast dalam blok try-catch untuk menukar pengecualian yang ditangkap kepada jenis pengecualian tersuai. Dalam kes sebenar, fungsi open_file membuang pengecualian FileNotFoundException Menangkap dan mengendalikan pengecualian boleh memberikan mesej ralat yang lebih spesifik.
