Hadoop2.4.1入门实例:MaxTemperature
注意:以下内容在2.x版本与1.x版本同样适用,已在2.4.1与1.2.0进行测试。 一、前期准备 1、创建伪分布Hadoop环境,请参考官方文档。或者http://blog.csdn.net/jediael_lu/article/details/38637277 2、准备数据文件如下sample.txt: 12345679867623119010123
注意:以下内容在2.x版本与1.x版本同样适用,已在2.4.1与1.2.0进行测试。
一、前期准备
1、创建伪分布Hadoop环境,请参考官方文档。或者http://blog.csdn.net/jediael_lu/article/details/38637277
2、准备数据文件如下sample.txt:
123456798676231190101234567986762311901012345679867623119010123456798676231190101234561+00121534567890356
123456798676231190101234567986762311901012345679867623119010123456798676231190101234562+01122934567890456
123456798676231190201234567986762311901012345679867623119010123456798676231190101234562+02120234567893456
123456798676231190401234567986762311901012345679867623119010123456798676231190101234561+00321234567803456
123456798676231190101234567986762311902012345679867623119010123456798676231190101234561+00429234567903456
123456798676231190501234567986762311902012345679867623119010123456798676231190101234561+01021134568903456
123456798676231190201234567986762311902012345679867623119010123456798676231190101234561+01124234578903456
123456798676231190301234567986762311905012345679867623119010123456798676231190101234561+04121234678903456
123456798676231190301234567986762311905012345679867623119010123456798676231190101234561+00821235678903456
二、编写代码
1、创建Map
package org.jediael.hadoopDemo.maxtemperature; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class MaxTemperatureMapper extends Mapper<longwritable text intwritable> { private static final int MISSING = 9999; @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String year = line.substring(15, 19); int airTemperature; if (line.charAt(87) == '+') { // parseInt doesn't like leading plus // signs airTemperature = Integer.parseInt(line.substring(88, 92)); } else { airTemperature = Integer.parseInt(line.substring(87, 92)); } String quality = line.substring(92, 93); if (airTemperature != MISSING && quality.matches("[01459]")) { context.write(new Text(year), new IntWritable(airTemperature)); } } } </longwritable>
2、创建Reduce
package org.jediael.hadoopDemo.maxtemperature; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class MaxTemperatureReducer extends Reducer<text intwritable text> { @Override public void reduce(Text key, Iterable<intwritable> values, Context context) throws IOException, InterruptedException { int maxValue = Integer.MIN_VALUE; for (IntWritable value : values) { maxValue = Math.max(maxValue, value.get()); } context.write(key, new IntWritable(maxValue)); } }</intwritable></text>
3、创建main方法
package org.jediael.hadoopDemo.maxtemperature; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MaxTemperature { public static void main(String[] args) throws Exception { if (args.length != 2) { System.err .println("Usage: MaxTemperature <input path> <output path>"); System.exit(-1); } Job job = new Job(); job.setJarByClass(MaxTemperature.class); job.setJobName("Max temperature"); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(MaxTemperatureMapper.class); job.setReducerClass(MaxTemperatureReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } } </output>
4、导出成MaxTemp.jar,并上传至运行程序的服务器。
三、运行程序
1、创建input目录并将sample.txt复制到input目录
hadoop fs -put sample.txt /
2、运行程序
export HADOOP_CLASSPATH=MaxTemp.jar
hadoop org.jediael.hadoopDemo.maxtemperature.MaxTemperature /sample.txt output10
注意输出目录不能已经存在,否则会创建失败。
3、查看结果
(1)查看结果
[jediael@jediael44 code]$ hadoop fs -cat output10/*
14/07/09 14:51:35 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
1901 42
1902 212
1903 412
1904 32
1905 102
(2)运行时输出
[jediael@jediael44 code]$ hadoop org.jediael.hadoopDemo.maxtemperature.MaxTemperature /sample.txt output10
14/07/09 14:50:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/07/09 14:50:41 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/07/09 14:50:42 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
14/07/09 14:50:43 INFO input.FileInputFormat: Total input paths to process : 1
14/07/09 14:50:43 INFO mapreduce.JobSubmitter: number of splits:1
14/07/09 14:50:44 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1404888618764_0001
14/07/09 14:50:44 INFO impl.YarnClientImpl: Submitted application application_1404888618764_0001
14/07/09 14:50:44 INFO mapreduce.Job: The url to track the job: http://jediael44:8088/proxy/application_1404888618764_0001/
14/07/09 14:50:44 INFO mapreduce.Job: Running job: job_1404888618764_0001
14/07/09 14:50:57 INFO mapreduce.Job: Job job_1404888618764_0001 running in uber mode : false
14/07/09 14:50:57 INFO mapreduce.Job: map 0% reduce 0%
14/07/09 14:51:05 INFO mapreduce.Job: map 100% reduce 0%
14/07/09 14:51:15 INFO mapreduce.Job: map 100% reduce 100%
14/07/09 14:51:15 INFO mapreduce.Job: Job job_1404888618764_0001 completed successfully
14/07/09 14:51:16 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=94
FILE: Number of bytes written=185387
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1051
HDFS: Number of bytes written=43
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=5812
Total time spent by all reduces in occupied slots (ms)=7023
Total time spent by all map tasks (ms)=5812
Total time spent by all reduce tasks (ms)=7023
Total vcore-seconds taken by all map tasks=5812
Total vcore-seconds taken by all reduce tasks=7023
Total megabyte-seconds taken by all map tasks=5951488
Total megabyte-seconds taken by all reduce tasks=7191552
Map-Reduce Framework
Map input records=9
Map output records=8
Map output bytes=72
Map output materialized bytes=94
Input split bytes=97
Combine input records=0
Combine output records=0
Reduce input groups=5
Reduce shuffle bytes=94
Reduce input records=8
Reduce output records=5
Spilled Records=16
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=154
CPU time spent (ms)=1450
Physical memory (bytes) snapshot=303112192
Virtual memory (bytes) snapshot=1685733376
Total committed heap usage (bytes)=136515584
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=954
File Output Format Counters
Bytes Written=43

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyebaran bukan sahaja boleh meniru lebih baik, tetapi juga "mencipta". Model resapan (DiffusionModel) ialah model penjanaan imej. Berbanding dengan algoritma yang terkenal seperti GAN dan VAE dalam bidang AI, model resapan mengambil pendekatan yang berbeza. Idea utamanya ialah proses menambah hingar pada imej dan kemudian secara beransur-ansur menolaknya. Cara mengecilkan dan memulihkan imej asal adalah bahagian teras algoritma. Algoritma akhir mampu menghasilkan imej daripada imej bising rawak. Dalam beberapa tahun kebelakangan ini, pertumbuhan luar biasa AI generatif telah membolehkan banyak aplikasi menarik dalam penjanaan teks ke imej, penjanaan video dan banyak lagi. Prinsip asas di sebalik alat generatif ini ialah konsep resapan, mekanisme pensampelan khas yang mengatasi batasan kaedah sebelumnya.

Kimi: Hanya dalam satu ayat, dalam sepuluh saat sahaja, PPT akan siap. PPT sangat menjengkelkan! Untuk mengadakan mesyuarat, anda perlu mempunyai PPT; untuk menulis laporan mingguan, anda perlu mempunyai PPT untuk membuat pelaburan, anda perlu menunjukkan PPT walaupun anda menuduh seseorang menipu, anda perlu menghantar PPT. Kolej lebih seperti belajar jurusan PPT Anda menonton PPT di dalam kelas dan melakukan PPT selepas kelas. Mungkin, apabila Dennis Austin mencipta PPT 37 tahun lalu, dia tidak menyangka satu hari nanti PPT akan berleluasa. Bercakap tentang pengalaman sukar kami membuat PPT membuatkan kami menitiskan air mata. "Ia mengambil masa tiga bulan untuk membuat PPT lebih daripada 20 muka surat, dan saya menyemaknya berpuluh-puluh kali. Saya rasa ingin muntah apabila saya melihat PPT itu." ialah PPT." Jika anda mengadakan mesyuarat dadakan, anda harus melakukannya

Pada awal pagi 20 Jun, waktu Beijing, CVPR2024, persidangan penglihatan komputer antarabangsa teratas yang diadakan di Seattle, secara rasmi mengumumkan kertas kerja terbaik dan anugerah lain. Pada tahun ini, sebanyak 10 kertas memenangi anugerah, termasuk 2 kertas terbaik dan 2 kertas pelajar terbaik Selain itu, terdapat 2 pencalonan kertas terbaik dan 4 pencalonan kertas pelajar terbaik. Persidangan teratas dalam bidang visi komputer (CV) ialah CVPR, yang menarik sejumlah besar institusi penyelidikan dan universiti setiap tahun. Mengikut statistik, sebanyak 11,532 kertas telah diserahkan tahun ini, 2,719 daripadanya diterima, dengan kadar penerimaan 23.6%. Menurut analisis statistik data CVPR2024 Institut Teknologi Georgia, dari perspektif topik penyelidikan, bilangan kertas terbesar ialah sintesis dan penjanaan imej dan video (Imageandvideosyn

Sebagai bahasa pengaturcaraan yang digunakan secara meluas, bahasa C merupakan salah satu bahasa asas yang mesti dipelajari bagi mereka yang ingin melibatkan diri dalam pengaturcaraan komputer. Walau bagaimanapun, bagi pemula, mempelajari bahasa pengaturcaraan baharu boleh menjadi sukar, terutamanya disebabkan kekurangan alat pembelajaran dan bahan pengajaran yang berkaitan. Dalam artikel ini, saya akan memperkenalkan lima perisian pengaturcaraan untuk membantu pemula memulakan bahasa C dan membantu anda bermula dengan cepat. Perisian pengaturcaraan pertama ialah Code::Blocks. Code::Blocks ialah persekitaran pembangunan bersepadu sumber terbuka (IDE) percuma untuk

Kami tahu bahawa LLM dilatih pada kelompok komputer berskala besar menggunakan data besar-besaran Tapak ini telah memperkenalkan banyak kaedah dan teknologi yang digunakan untuk membantu dan menambah baik proses latihan LLM. Hari ini, perkara yang ingin kami kongsikan ialah artikel yang mendalami teknologi asas dan memperkenalkan cara menukar sekumpulan "logam kosong" tanpa sistem pengendalian pun menjadi gugusan komputer untuk latihan LLM. Artikel ini datang daripada Imbue, sebuah permulaan AI yang berusaha untuk mencapai kecerdasan am dengan memahami cara mesin berfikir. Sudah tentu, mengubah sekumpulan "logam kosong" tanpa sistem pengendalian menjadi gugusan komputer untuk latihan LLM bukanlah proses yang mudah, penuh dengan penerokaan dan percubaan dan kesilapan, tetapi Imbue akhirnya berjaya melatih LLM dengan 70 bilion parameter proses terkumpul

Tajuk: Wajib dibaca untuk pemula teknikal: Analisis kesukaran bahasa C dan Python, memerlukan contoh kod khusus Dalam era digital hari ini, teknologi pengaturcaraan telah menjadi keupayaan yang semakin penting. Sama ada anda ingin bekerja dalam bidang seperti pembangunan perisian, analisis data, kecerdasan buatan, atau hanya belajar pengaturcaraan kerana minat, memilih bahasa pengaturcaraan yang sesuai ialah langkah pertama. Di antara banyak bahasa pengaturcaraan, bahasa C dan Python adalah dua bahasa pengaturcaraan yang digunakan secara meluas, masing-masing mempunyai ciri tersendiri. Artikel ini akan menganalisis tahap kesukaran bahasa C dan Python

Editor Laporan Kuasa Mesin: Yang Wen Gelombang kecerdasan buatan yang diwakili oleh model besar dan AIGC telah mengubah cara kita hidup dan bekerja secara senyap-senyap, tetapi kebanyakan orang masih tidak tahu cara menggunakannya. Oleh itu, kami telah melancarkan lajur "AI dalam Penggunaan" untuk memperkenalkan secara terperinci cara menggunakan AI melalui kes penggunaan kecerdasan buatan yang intuitif, menarik dan padat serta merangsang pemikiran semua orang. Kami juga mengalu-alukan pembaca untuk menyerahkan kes penggunaan yang inovatif dan praktikal. Pautan video: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Baru-baru ini, vlog kehidupan seorang gadis yang tinggal bersendirian menjadi popular di Xiaohongshu. Animasi gaya ilustrasi, ditambah dengan beberapa perkataan penyembuhan, boleh diambil dengan mudah dalam beberapa hari sahaja.

Retrieval-augmented generation (RAG) ialah teknik yang menggunakan perolehan semula untuk meningkatkan model bahasa. Secara khusus, sebelum model bahasa menjana jawapan, ia mendapatkan semula maklumat yang berkaitan daripada pangkalan data dokumen yang luas dan kemudian menggunakan maklumat ini untuk membimbing proses penjanaan. Teknologi ini boleh meningkatkan ketepatan dan perkaitan kandungan dengan banyak, mengurangkan masalah halusinasi dengan berkesan, meningkatkan kelajuan kemas kini pengetahuan, dan meningkatkan kebolehkesanan penjanaan kandungan. RAG sudah pasti salah satu bidang penyelidikan kecerdasan buatan yang paling menarik. Untuk butiran lanjut tentang RAG, sila rujuk artikel lajur di tapak ini "Apakah perkembangan baharu dalam RAG, yang pakar dalam menebus kekurangan model besar?" Ulasan ini menerangkannya dengan jelas." Tetapi RAG tidak sempurna, dan pengguna sering menghadapi beberapa "titik kesakitan" apabila menggunakannya. Baru-baru ini, penyelesaian AI generatif termaju NVIDIA
