大量redo生成的问题原因及改进
其实最终还是因为在短期内生成了大量的redo,造成了频繁的日志切换,导致归档占用了大量的空间,最后无法登录,从这个层面来说,我
接着上次分享的关于数据库无法登录的原因
其实最终还是因为在短期内生成了大量的redo,造成了频繁的日志切换,导致归档占用了大量的空间,最后无法登录,从这个层面来说,我们可以做一些工作来尽可能长时间的保留近期的归档,但是我们还可以换一个思路,那就是看看到底是什么操作生成了大量的redo,能不能试着减少redo的生成量。
一般来说,这个问题有点傻,日志肯定是记录尽可能完整的信息,这是做数据恢复的基础,我们还是不要过早下结论,先来分析一下再来做决定。
查看数据库的redo切换频率,在近几天内的redo切换频率极高,对于一个OLTP的系统来说是很非常高的负载,这种频繁的日志切换我也只在数据迁移的一些场景中碰到过。
但是奇怪的是查看数据库的DB time,却发现这个值其实并不高,看起来似乎有些矛盾,从这一点来看数据库内的数据变化频率其实并不是很高。
BEGIN_SNAP END_SNAP SNAPDATE DURATION_MINS DBTIME
---------- ---------- ----------------------- ----------
82560 82561 05 Sep 2015 00:00 30 26
82561 82562 05 Sep 2015 00:30 30 26
82562 82563 05 Sep 2015 01:00 29 29
82563 82564 05 Sep 2015 01:30 30 27
82564 82565 05 Sep 2015 02:00 30 23
82565 82566 05 Sep 2015 02:30 30 23
82566 82567 05 Sep 2015 03:00 30 20
82567 82568 05 Sep 2015 03:30 30 22
82568 82569 05 Sep 2015 04:00 30 20
82569 82570 05 Sep 2015 04:30 30 25
82570 82571 05 Sep 2015 05:00 30 23
82571 82572 05 Sep 2015 05:30 30 27
82572 82573 05 Sep 2015 06:00 30 40
82573 82574 05 Sep 2015 06:30 30 26
82574 82575 05 Sep 2015 07:00 30 28
82575 82576 05 Sep 2015 07:30 30 34
82576 82577 05 Sep 2015 08:00 29 40
82577 82578 05 Sep 2015 08:30 30 37
82578 82579 05 Sep 2015 09:00 30 40
82579 82580 05 Sep 2015 09:30 30 38
82580 82581 05 Sep 2015 10:00 30 41
82581 82582 05 Sep 2015 10:30 30 40
82582 82583 05 Sep 2015 11:00 30 37
82583 82584 05 Sep 2015 11:30 30 39
82584 82585 05 Sep 2015 12:00 30 41
82585 82586 05 Sep 2015 12:30 30 34
82586 82587 05 Sep 2015 13:00 30 53
82587 82588 05 Sep 2015 13:30 30 82
82588 82589 05 Sep 2015 14:00 30 74
82589 82590 05 Sep 2015 14:30 30 45
对于这种情况,我们还是抓取一个awr报告来看看。
在awr报告中,可以看到瓶颈还是主要在DB CPU和IOsh
Top 5 Timed Foreground Events
EventWaitsTime(s)Avg wait (ms)% DB timeWait Class
DB CPU 2,184 68.89
db file parallel read 6,096 413 68 13.02 User I/O
log file sync 65,199 363 6 11.47 Commit
db file sequential read 46,038 172 4 5.43 User I/O
direct path read 415,685 46 0 1.47 User I/O
查看时间模型,可以看到DB CPU和sql相关的影响各占了主要的比例。
看到这,自己还是有些犯嘀咕,柑橘这个问题还是有些奇怪,能够关注的一个重点就是sql语句了,但是top 1的sql语句还是有些奇怪。
Elapsed Time (s)ExecutionsElapsed Time per Exec (s)%Total%CPU%IOSQL IdSQL ModuleSQL Text
931.73 14,409 0.06 29.39 99.77 0.00 JDBC Thin Client update sync_id set ma...
这条语句执行频率极高,语句也很简单,但是CPU消耗却很高,初步怀疑是走了全表扫描。
语句如下:
update sync_id set max_id = :1 where sync_id_type = :2
简单查看执行计划,发现确实是走了全表扫描,如果碰到这个问题,第一感觉是需要走索引,没有索引可以建个索引,但是当我看到sql by Executions这个部分时,自己感觉到问题其实不是那么简单。
可以看到第2个语句其实就是刚刚提到的top 1的sql,对应的指标还是很不寻常的,一次执行处理的行数近5000度行,执行了1万多次,处理的数据行数近8千万。
ExecutionsRows ProcessedRows per ExecElapsed Time (s)%CPU%IOSQL IdSQL ModuleSQL Text
14,684 14,684 1.00 3.39 94.7 .7 JDBC Thin Client update sus_log set failed_c...
14,409 78,329,332 5,436.14 931.73 99.8 0 JDBC Thin Client update sync_id set ma...

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Bahasa Go ialah bahasa pengaturcaraan yang cekap, ringkas dan mudah dipelajari Ia digemari oleh pembangun kerana kelebihannya dalam pengaturcaraan serentak dan pengaturcaraan rangkaian. Dalam pembangunan sebenar, operasi pangkalan data adalah bahagian yang sangat diperlukan Artikel ini akan memperkenalkan cara menggunakan bahasa Go untuk melaksanakan operasi penambahan, pemadaman, pengubahsuaian dan pertanyaan pangkalan data. Dalam bahasa Go, kami biasanya menggunakan perpustakaan pihak ketiga untuk mengendalikan pangkalan data, seperti pakej sql yang biasa digunakan, gorm, dsb. Di sini kami mengambil pakej sql sebagai contoh untuk memperkenalkan cara melaksanakan operasi penambahan, pemadaman, pengubahsuaian dan pertanyaan pangkalan data. Andaikan kami menggunakan pangkalan data MySQL.

Pemetaan polimorfik hibernate boleh memetakan kelas yang diwarisi ke pangkalan data dan menyediakan jenis pemetaan berikut: subkelas bercantum: Cipta jadual berasingan untuk subkelas, termasuk semua lajur kelas induk. table-per-class: Cipta jadual berasingan untuk subkelas, yang mengandungi hanya lajur khusus subkelas. union-subclass: serupa dengan joined-subclass, tetapi jadual kelas induk menggabungkan semua lajur subclass.

Keluaran terbaharu Apple bagi sistem iOS18, iPadOS18 dan macOS Sequoia telah menambah ciri penting pada aplikasi Photos, yang direka untuk membantu pengguna memulihkan foto dan video yang hilang atau rosak dengan mudah disebabkan pelbagai sebab. Ciri baharu ini memperkenalkan album yang dipanggil "Dipulihkan" dalam bahagian Alat pada apl Foto yang akan muncul secara automatik apabila pengguna mempunyai gambar atau video pada peranti mereka yang bukan sebahagian daripada pustaka foto mereka. Kemunculan album "Dipulihkan" menyediakan penyelesaian untuk foto dan video yang hilang akibat kerosakan pangkalan data, aplikasi kamera tidak disimpan ke pustaka foto dengan betul, atau aplikasi pihak ketiga yang menguruskan pustaka foto. Pengguna hanya memerlukan beberapa langkah mudah

HTML tidak boleh membaca pangkalan data secara langsung, tetapi ia boleh dicapai melalui JavaScript dan AJAX. Langkah-langkah termasuk mewujudkan sambungan pangkalan data, menghantar pertanyaan, memproses respons dan mengemas kini halaman. Artikel ini menyediakan contoh praktikal menggunakan JavaScript, AJAX dan PHP untuk membaca data daripada pangkalan data MySQL, menunjukkan cara untuk memaparkan hasil pertanyaan secara dinamik dalam halaman HTML. Contoh ini menggunakan XMLHttpRequest untuk mewujudkan sambungan pangkalan data, menghantar pertanyaan dan memproses respons, dengan itu mengisi data ke dalam elemen halaman dan merealisasikan fungsi HTML membaca pangkalan data.

Cara menggunakan MySQLi untuk mewujudkan sambungan pangkalan data dalam PHP: Sertakan sambungan MySQLi (require_once) Cipta fungsi sambungan (functionconnect_to_db) Fungsi sambungan panggilan ($conn=connect_to_db()) Laksanakan pertanyaan ($result=$conn->query()) Tutup sambungan ( $conn->close())

Untuk mengendalikan ralat sambungan pangkalan data dalam PHP, anda boleh menggunakan langkah berikut: Gunakan mysqli_connect_errno() untuk mendapatkan kod ralat. Gunakan mysqli_connect_error() untuk mendapatkan mesej ralat. Dengan menangkap dan mengelog mesej ralat ini, isu sambungan pangkalan data boleh dikenal pasti dan diselesaikan dengan mudah, memastikan kelancaran aplikasi anda.

PHP ialah bahasa pengaturcaraan bahagian belakang yang digunakan secara meluas dalam pembangunan laman web Ia mempunyai fungsi operasi pangkalan data yang kuat dan sering digunakan untuk berinteraksi dengan pangkalan data seperti MySQL. Walau bagaimanapun, disebabkan kerumitan pengekodan aksara Cina, masalah sering timbul apabila berurusan dengan aksara Cina bercelaru dalam pangkalan data. Artikel ini akan memperkenalkan kemahiran dan amalan PHP dalam mengendalikan aksara bercelaru bahasa Cina dalam pangkalan data, termasuk punca biasa aksara bercelaru, penyelesaian dan contoh kod khusus. Sebab biasa aksara bercelaru ialah tetapan set aksara pangkalan data yang salah: set aksara yang betul perlu dipilih semasa mencipta pangkalan data, seperti utf8 atau u

Melalui pakej pangkalan data/sql perpustakaan standard Go, anda boleh menyambung ke pangkalan data jauh seperti MySQL, PostgreSQL atau SQLite: buat rentetan sambungan yang mengandungi maklumat sambungan pangkalan data. Gunakan fungsi sql.Open() untuk membuka sambungan pangkalan data. Lakukan operasi pangkalan data seperti pertanyaan SQL dan operasi sisipan. Gunakan tangguh untuk menutup sambungan pangkalan data untuk mengeluarkan sumber.
