Rumah pangkalan data tutorial mysql MySQL 分区表 partition线上修改分区字段,后续进一步学习partit

MySQL 分区表 partition线上修改分区字段,后续进一步学习partit

Jun 07, 2016 pm 03:33 PM
mysql partition Semak semula Pembahagian jadual partition

-- MySQL分区, 子分区以及对录入Null的处理情况.看完官方文档做的笔记. -- KEY Partitioning Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a user-defined expression, the hashing function for

-- MySQL分区, 子分区以及对录入Null值的处理情况. 看完官方文档做的笔记.

-- KEY Partitioning
Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a user-defined expression, the hashing function for key partitioning is supplied by the MySQL server. This internal hashing function is based on the same algorithm as PASSWORD().
KEY is used rather than HASH.
KEY takes only a list of one or more column names. The column or columns used as the partitioning key must comprise part or all of the table's primary key, if the table has one.
KEY takes a list of zero or more column names. Where no column name is specified as the partitioning key, the table's primary key is used, if there is one. For example, the following CREATE TABLE statement is valid in MySQL 5.5: 

 mysql> CREATE TABLE k1 (
  ->     id INT NOT NULL PRIMARY KEY,
  ->     name VARCHAR(20)
  -> )
  -> PARTITION BY KEY()
  -> PARTITIONS 2;
 Query OK, 0 rows affected (0.06 sec)

 If there is no primary key but there is a unique key, then the unique key is used for the partitioning key:
 mysql> CREATE TABLE k2 (
  ->     id INT NOT NULL,
  ->     name VARCHAR(20),
  ->     UNIQUE KEY (id)
  -> )
  -> PARTITION BY KEY()
  -> PARTITIONS 2;
 Query OK, 0 rows affected (0.02 sec)

Salin selepas log masuk



However, if the unique key column were not defined as NOT NULL, then the previous statement would fail.

In both of these cases, the partitioning key is the id column, even though it is not shown in the output of SHOW CREATE TABLE or in the PARTITION_EXPRESSION column of the INFORMATION_SCHEMA.PARTITIONS table.
As below:

mysql>  SELECT t.TABLE_NAME, t.PARTITION_NAME,t.TABLE_ROWS  FROM INFORMATION_SCHEMA.PARTITIONS t WHERE table_name='k2';
+------------+----------------+------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS |
+------------+----------------+------------+
| k2         | p0             |          3 |
| k2         | p1             |          4 |
+------------+----------------+------------+
2 rows in set (0.01 sec)

Salin selepas log masuk

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted to integer or NULL values.
For example, the following CREATE TABLE statement is valid:
没有primary key,没有在定义时候指定分区字段,会抱错:

mysql> CREATE TABLE tm3 (
    ->     s1 CHAR(32) 
    -> )
    -> PARTITION BY KEY()
    -> PARTITIONS 10;
ERROR 1488 (HY000): Field in list of fields for partition function not found in table
在定义中加入分区字段,add the column in define , it is ok
mysql> CREATE TABLE tm3 (
    ->     s1 CHAR(32) 
    -> )
    -> PARTITION BY KEY(s1)
    -> PARTITIONS 10;
Query OK, 0 rows affected (0.07 sec)

mysql> 

Salin selepas log masuk

 

子分区 Subpartitioning
Subpartitioning—also known as composite partitioning—is the further division of each partition in a partitioned table.
For example, consider the following CREATE TABLE statement:

mysql> CREATE TABLE ts (id INT, purchased DATE)
    ->     PARTITION BY RANGE( YEAR(purchased) )
    ->     SUBPARTITION BY HASH( TO_DAYS(purchased) ) (
    ->         PARTITION p0 VALUES LESS THAN (1990) (
    ->             SUBPARTITION s0,
    ->             SUBPARTITION s1
    ->         ),
    ->         PARTITION p1 VALUES LESS THAN (2000) (
    ->             SUBPARTITION s2,
    ->             SUBPARTITION s3
    ->         ),
    ->         PARTITION p2 VALUES LESS THAN MAXVALUE (
    ->             SUBPARTITION s4,
    ->             SUBPARTITION s5
    ->         )
    ->     );

Query OK, 0 rows affected (0.04 sec)


CREATE TABLE ts3 (id INT, purchased DATE)
    PARTITION BY RANGE( YEAR(purchased) )
    SUBPARTITION BY HASH( TO_DAYS(purchased) ) (
        PARTITION p0 VALUES LESS THAN (1990) (
            SUBPARTITION s0,
            SUBPARTITION s1
        ),
        PARTITION p1 VALUES LESS THAN (2000),
        PARTITION p2 VALUES LESS THAN MAXVALUE (
            SUBPARTITION s2,
            SUBPARTITION s3
        )
    );

Salin selepas log masuk

 

(1) Each partition must have the same number of subpartitions. if not ,fail

 mysql> CREATE TABLE ts3 (id INT, purchased DATE)
  ->     PARTITION BY RANGE( YEAR(purchased) )
  ->     SUBPARTITION BY HASH( TO_DAYS(purchased) ) (
  ->         PARTITION p0 VALUES LESS THAN (1990) (
  ->             SUBPARTITION s0,
  ->             SUBPARTITION s1
  ->         ),
  ->         PARTITION p1 VALUES LESS THAN (2000),
  ->         PARTITION p2 VALUES LESS THAN MAXVALUE (
  ->             SUBPARTITION s2,
  ->             SUBPARTITION s3
  ->         )
  ->     );
 ERROR 1064 (42000): Wrong number of subpartitions defined, mismatch with previous setting near '
   PARTITION p2 VALUES LESS THAN MAXVALUE (
    SUBPARTITION s2,
  ' at line 8
 mysql> 
Salin selepas log masuk



(2) Each SUBPARTITION clause must include (at a minimum) a name for the subpartition.

Otherwise, you may set any desired option for the subpartition or allow it to assume its default setting for that option.


(3) Subpartition names must be unique across the entire table.


(4)  Subpartitions can be used with especially large tables to distribute data and indexes across many disks. Suppose that you have 6 disks mounted as /disk0, /disk1, /disk2, and so on. Now consider the following example:

mysql> CREATE TABLE ts5 (id INT, purchased DATE)
    ->     PARTITION BY RANGE( YEAR(purchased) )
    ->     SUBPARTITION BY HASH( TO_DAYS(purchased) ) (
    ->         PARTITION p0 VALUES LESS THAN (1990) (
    ->             SUBPARTITION s0
    ->                 DATA DIRECTORY = '/disk0/data'
    ->                 INDEX DIRECTORY = '/disk0/idx',
    ->             SUBPARTITION s1
    ->                 DATA DIRECTORY = '/disk1/data'
    ->                 INDEX DIRECTORY = '/disk1/idx'
    ->         ),
    ->         PARTITION p1 VALUES LESS THAN (2000) (
    ->             SUBPARTITION s2
    ->                 DATA DIRECTORY = '/disk2/data'
    ->                 INDEX DIRECTORY = '/disk2/idx',
    ->             SUBPARTITION s3
    ->                 DATA DIRECTORY = '/disk3/data'
    ->                 INDEX DIRECTORY = '/disk3/idx'
    ->         ),
    ->         PARTITION p2 VALUES LESS THAN MAXVALUE (
    ->             SUBPARTITION s4
    ->                 DATA DIRECTORY = '/disk4/data'
    ->                 INDEX DIRECTORY = '/disk4/idx',
    ->             SUBPARTITION s5
    ->                 DATA DIRECTORY = '/disk5/data'
    ->                 INDEX DIRECTORY = '/disk5/idx'
    ->         )
    ->     );
Query OK, 0 rows affected (0.04 sec)

In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other variations are possible; 
Salin selepas log masuk
another example might be: 
mysql> CREATE TABLE ts6 (id INT, purchased DATE)
    ->     PARTITION BY RANGE(YEAR(purchased))
    ->     SUBPARTITION BY HASH( TO_DAYS(purchased) ) (
    ->         PARTITION p0 VALUES LESS THAN (1990) (
    ->             SUBPARTITION s0a
    ->                 DATA DIRECTORY = '/disk0'
    ->                 INDEX DIRECTORY = '/disk1',
    ->             SUBPARTITION s0b
    ->                 DATA DIRECTORY = '/disk2'
    ->                 INDEX DIRECTORY = '/disk3'
    ->         ),
    ->         PARTITION p1 VALUES LESS THAN (2000) (
    ->             SUBPARTITION s1a
    ->                 DATA DIRECTORY = '/disk4/data'
    ->                 INDEX DIRECTORY = '/disk4/idx',
    ->             SUBPARTITION s1b
    ->                 DATA DIRECTORY = '/disk5/data'
    ->                 INDEX DIRECTORY = '/disk5/idx'
    ->         ),
    ->         PARTITION p2 VALUES LESS THAN MAXVALUE (
    ->             SUBPARTITION s2a,
    ->             SUBPARTITION s2b
    ->         )
    ->     );
Query OK, 0 rows affected (0.04 sec)

Salin selepas log masuk


 

In future, when the number of purchases for the decade beginning with the year 2000 grows to a point where the default location no longer provides sufficient space, the corresponding rows can be moved using an ALTER TABLE ... REORGANIZE PARTITION statement. See div 17.3, “Partition Management”, for an explanation of how this can be done.


The DATA DIRECTORY and INDEX DIRECTORY options are disallowed in partition definitions when the NO_DIR_IN_CREATE server SQL mode is in effect. Beginning with MySQL 5.5.5, these options are also disallowed when defining subpartitions (Bug#42954).

How MySQL Partitioning Handles NULL
Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression,
whether it is a column value or the value of a user-supplied expression. Even though it is permitted to use NULL as the value of an expression that must otherwise yield an integer, it is important to keep in mind that NULL is not a number. MySQL's partitioning implementation treats NULL as being less than any non-NULL value, just as ORDER BY does.

 

This means that treatment of NULL varies between partitioning of different types, and may produce behavior which you do not expect if you are not prepared for it.
This being the case, we discuss in this div how each MySQL partitioning type handles NULL values when determining the partition in which a row should be stored,
and provide examples for each.

 

Handling of NULL with RANGE partitioning.  If you insert a row into a table partitioned by RANGE such that the column value used to determine the partition is NULL,
the row is inserted into the lowest partition. For example, consider these two tables in a database named p, created as follows:

 

(1) Rang Partition,OK
You can see the partitions created by these two CREATE TABLE statements using the following query against the PARTITIONS table in the INFORMATION_SCHEMA database:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
    ->    FROM INFORMATION_SCHEMA.PARTITIONS
    ->     WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| t1         | p0             |          0 |              0 |       16384 |
| t1         | p1             |          0 |              0 |       16384 |
| t1         | p2             |          0 |              0 |       16384 |
| t2         | p0             |          0 |              0 |       16384 |
| t2         | p1             |          0 |              0 |       16384 |
| t2         | p2             |          0 |              0 |       16384 |
| t2         | p3             |          0 |              0 |       16384 |
| ts         | p0             |          0 |              0 |       16384 |
| ts         | p0             |          0 |              0 |       16384 |
| ts         | p1             |          0 |              0 |       16384 |
| ts         | p1             |          0 |              0 |       16384 |
| ts         | p2             |          0 |              0 |       16384 |
| ts         | p2             |          0 |              0 |       16384 |
+------------+----------------+------------+----------------+-------------+
14 rows in set (0.00 sec)
Salin selepas log masuk

 

Now let us populate each of these tables with a single row containing a NULL in the column used as the partitioning key,
and verify that the rows were inserted using a pair of SELECT statements:

You can see which partitions are used to store the inserted rows by rerunning the previous query against INFORMATION_SCHEMA.PARTITIONS and inspecting the output:

mysql> INSERT INTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+------+--------+
| c1   | c2     |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.01 sec)

mysql> SELECT * FROM t2;
+------+--------+
| c1   | c2     |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH    FROM INFORMATION_SCHEMA.PARTITIONS    
Salin selepas log masuk
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| t1         | p0             |          1 |          16384 |       16384 |
| t1         | p1             |          0 |              0 |       16384 |
| t1         | p2             |          0 |              0 |       16384 |
| t2         | p0             |          1 |          16384 |       16384 |
| t2         | p1             |          0 |              0 |       16384 |
| t2         | p2             |          0 |              0 |       16384 |
| t2         | p3             |          0 |              0 |       16384 |
| ts         | p0             |          0 |              0 |       16384 |
| ts         | p0             |          0 |              0 |       16384 |
| ts         | p1             |          0 |              0 |       16384 |
| ts         | p1             |          0 |              0 |       16384 |
| ts         | p2             |          0 |              0 |       16384 |
| ts         | p2             |          0 |              0 |       16384 |
+------------+----------------+------------+----------------+-------------+
13 rows in set (0.00 sec)


You can also demonstrate that these rows were stored in the lowest partition of each table by dropping these partitions, 
Salin selepas log masuk
and then re-running the SELECT statements: 
Salin selepas log masuk
 
Salin selepas log masuk

(2) Handling of NULL with LIST partitioning. 必须将null在定义中加入才能录入null的分区数据

mysql> CREATE TABLE ts3 (
    ->     c1 INT,
    ->     c2 VARCHAR(20)
    -> )
    -> PARTITION BY LIST(c1) (
    ->     PARTITION p0 VALUES IN (0, 3, 6),
    ->     PARTITION p1 VALUES IN (1, 4, 7, NULL),
    ->     PARTITION p2 VALUES IN (2, 5, 8)
    -> );
Query OK, 0 rows affected (0.01 sec)
Salin selepas log masuk

否则insert null的分区数据会抱错: ERROR 1504 (HY000): Table has no partition for value NULL

 

(3) Handling of NULL with HASH and KEY partitioning.

mysql> CREATE TABLE th (
    ->     c1 INT,
    ->     c2 VARCHAR(20)
    -> )
    -> PARTITION BY HASH(c1)
    -> PARTITIONS 2;
Query OK, 0 rows affected (0.00 sec)

There is no data record in beginnig.
mysql>   SELECT TABLE_NAME,PARTITION_NAME,TABLE_ROWS,AVG_ROW_LENGTH,DATA_LENGTH
    ->          FROM INFORMATION_SCHEMA.PARTITIONS
    ->          WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th         | p0             |          0 |              0 |       16384 |
| th         | p1             |          0 |              0 |       16384 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

mysql> INSERT INTO th VALUES (NULL, 'mothra'), (0, 'gigan');
Query OK, 2 rows affected (0.00 sec)
Records: 2  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM th;
+------+--------+
| c1   | c2     |
+------+--------+
| NULL | mothra |
|    0 | gigan  |
+------+--------+
2 rows in set (0.00 sec)

mysql>   SELECT TABLE_NAME,PARTITION_NAME,TABLE_ROWS,AVG_ROW_LENGTH,DATA_LENGTH
    ->          FROM INFORMATION_SCHEMA.PARTITIONS
    ->          WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th         | p0             |          2 |           8192 |       16384 |
| th         | p1             |          0 |              0 |       16384 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

Salin selepas log masuk

Recall that for any integer N, the value of NULL MOD N is always NULL. For tables that are partitioned by HASH or KEY, this result is treated for determining the correct partition as 0. Checking the INFORMATION_SCHEMA.PARTITIONS table once again, we can see that both rows were inserted into partition p0:

 

MySQL对分区中null值得处理, rang,key,以及hash中,都是直接放入min的分区中. list分区中则是放入事先定义好的包含null的分区中,如果list分区事先没有定义包含null值的分区,那么录入的时候会抱错

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Repo: Cara menghidupkan semula rakan sepasukan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Cara mendapatkan biji gergasi
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Kemahiran pemprosesan struktur data besar PHP Kemahiran pemprosesan struktur data besar PHP May 08, 2024 am 10:24 AM

Kemahiran pemprosesan struktur data besar: Pecahan: Pecahkan set data dan proseskannya dalam bahagian untuk mengurangkan penggunaan memori. Penjana: Hasilkan item data satu demi satu tanpa memuatkan keseluruhan set data, sesuai untuk set data tanpa had. Penstriman: Baca fail atau hasil pertanyaan baris demi baris, sesuai untuk fail besar atau data jauh. Storan luaran: Untuk set data yang sangat besar, simpan data dalam pangkalan data atau NoSQL.

Bagaimana untuk mengoptimumkan prestasi pertanyaan MySQL dalam PHP? Bagaimana untuk mengoptimumkan prestasi pertanyaan MySQL dalam PHP? Jun 03, 2024 pm 08:11 PM

Prestasi pertanyaan MySQL boleh dioptimumkan dengan membina indeks yang mengurangkan masa carian daripada kerumitan linear kepada kerumitan logaritma. Gunakan PreparedStatements untuk menghalang suntikan SQL dan meningkatkan prestasi pertanyaan. Hadkan hasil pertanyaan dan kurangkan jumlah data yang diproses oleh pelayan. Optimumkan pertanyaan penyertaan, termasuk menggunakan jenis gabungan yang sesuai, membuat indeks dan mempertimbangkan untuk menggunakan subkueri. Menganalisis pertanyaan untuk mengenal pasti kesesakan; gunakan caching untuk mengurangkan beban pangkalan data;

Bagaimana untuk menggunakan sandaran dan pemulihan MySQL dalam PHP? Bagaimana untuk menggunakan sandaran dan pemulihan MySQL dalam PHP? Jun 03, 2024 pm 12:19 PM

Membuat sandaran dan memulihkan pangkalan data MySQL dalam PHP boleh dicapai dengan mengikuti langkah berikut: Sandarkan pangkalan data: Gunakan arahan mysqldump untuk membuang pangkalan data ke dalam fail SQL. Pulihkan pangkalan data: Gunakan arahan mysql untuk memulihkan pangkalan data daripada fail SQL.

Bagaimana untuk memasukkan data ke dalam jadual MySQL menggunakan PHP? Bagaimana untuk memasukkan data ke dalam jadual MySQL menggunakan PHP? Jun 02, 2024 pm 02:26 PM

Bagaimana untuk memasukkan data ke dalam jadual MySQL? Sambung ke pangkalan data: Gunakan mysqli untuk mewujudkan sambungan ke pangkalan data. Sediakan pertanyaan SQL: Tulis pernyataan INSERT untuk menentukan lajur dan nilai yang akan dimasukkan. Laksanakan pertanyaan: Gunakan kaedah query() untuk melaksanakan pertanyaan sisipan Jika berjaya, mesej pengesahan akan dikeluarkan.

Bagaimana untuk membetulkan ralat mysql_native_password tidak dimuatkan pada MySQL 8.4 Bagaimana untuk membetulkan ralat mysql_native_password tidak dimuatkan pada MySQL 8.4 Dec 09, 2024 am 11:42 AM

Salah satu perubahan utama yang diperkenalkan dalam MySQL 8.4 (keluaran LTS terkini pada 2024) ialah pemalam "Kata Laluan Asli MySQL" tidak lagi didayakan secara lalai. Selanjutnya, MySQL 9.0 mengalih keluar pemalam ini sepenuhnya. Perubahan ini mempengaruhi PHP dan apl lain

Bagaimana untuk menggunakan prosedur tersimpan MySQL dalam PHP? Bagaimana untuk menggunakan prosedur tersimpan MySQL dalam PHP? Jun 02, 2024 pm 02:13 PM

Untuk menggunakan prosedur tersimpan MySQL dalam PHP: Gunakan PDO atau sambungan MySQLi untuk menyambung ke pangkalan data MySQL. Sediakan penyata untuk memanggil prosedur tersimpan. Laksanakan prosedur tersimpan. Proses set keputusan (jika prosedur tersimpan mengembalikan hasil). Tutup sambungan pangkalan data.

Bagaimana untuk membuat jadual MySQL menggunakan PHP? Bagaimana untuk membuat jadual MySQL menggunakan PHP? Jun 04, 2024 pm 01:57 PM

Mencipta jadual MySQL menggunakan PHP memerlukan langkah berikut: Sambung ke pangkalan data. Buat pangkalan data jika ia tidak wujud. Pilih pangkalan data. Buat jadual. Laksanakan pertanyaan. Tutup sambungan.

Perbezaan antara pangkalan data oracle dan mysql Perbezaan antara pangkalan data oracle dan mysql May 10, 2024 am 01:54 AM

Pangkalan data Oracle dan MySQL adalah kedua-dua pangkalan data berdasarkan model hubungan, tetapi Oracle lebih unggul dari segi keserasian, skalabiliti, jenis data dan keselamatan manakala MySQL memfokuskan pada kelajuan dan fleksibiliti dan lebih sesuai untuk set data bersaiz kecil. ① Oracle menyediakan pelbagai jenis data, ② menyediakan ciri keselamatan lanjutan, ③ sesuai untuk aplikasi peringkat perusahaan ① MySQL menyokong jenis data NoSQL, ② mempunyai langkah keselamatan yang lebih sedikit, dan ③ sesuai untuk aplikasi bersaiz kecil hingga sederhana.

See all articles