P2P技术体系结构与分类
P2P 技术存在三种结构模式的体系结构,即以 Napster 为代表的集中目录式结构、以 Gnutella 为代表的纯 P2P 网络结构和混合式 P2P 网络结构。从 P2P 技术的分代来说,到目前为止的 P2P 技术可分为四代:第一代 P2P( 中央控制网络体系结构 ) ,第二代 P2P( 分
P2P 技术存在三种结构模式的体系结构,即以Napster 为代表的集中目录式结构、以Gnutella 为代表的纯P2P 网络结构和混合式P2P 网络结构。从 P2P 技术的分代来说,到目前为止的P2P 技术可分为四代:第一代P2P( 中央控制网络体系结构) ,第二代P2P( 分散分布网络体系结构) ,第三代 P2P( 混合网络体系结构) ,第四代P2P( 目前发展中P2P 技术) 。
1 、第一代P2P( 中央控制网络体系结构—— 集中目录式结构)
集中目录式结构采用中央服务器管理P2P 各节点,P2P 节点向中央目录服务器 注册关于自身的信息( 名称、地址、资源和元数据) ,但所有内容存贮在各个节点中而非并服务器上,查询节点根据目录服务器中信息的查询以及网络流量和延迟等 信息来选择与定位其它对等点并直接建立连接,而不必经过中央目录服务器进行。集中目录式结构的优点是提高了网络的可管理性,使得对共享资源的查找和更新非 常方便; 缺点是网络的稳定性( 服务器失效则该服务器下的对等节点全部失效) 。
2 、第二代P2P( 分散分布网络体系结构—— 纯P2P 网络结构)
纯P2P 网络结构也被称作广播式的P2P 模型,它没有集中的中央目录服务器, 每个用户随机接入网络,并与自己相邻的一组邻居节点通过端到端连接构成一个逻辑覆盖的网络。对等节点之间的内容查询和内容共享都是直接通过相邻节点广播接 力传递,同时每个节点还会记录搜索轨迹,以防止搜索环路的产生。纯P2P 网络结构解决了网络结构中心化的问题,扩展性和容错性较好。由于没有一个对等节点 知道整个网络的结构,网络中的搜索算法以泛洪的方式进行,控制信息的泛滥消耗了大量带宽并很快造成网络拥塞甚至网络的不稳定,从而导致整个网络的可用性较 差,另外这类系统更容易受到垃圾信息,甚至是病毒的恶意攻击。
3 、第三代P2P( 混合网络体系结构—— 混合式网络结构)
混合式网络结构综合了纯P2P 去中心化和集中式P2P 快速查找的优势。按节点 能力不同( 计算能力、内存大小、连接带宽、网络滞留时间等) 区分为普通节点和搜索节点两类。搜索节点与其临近的若干普通节点之间构成一个自治的簇,簇内采 用基于集中目录式的P2P 模式,而整个P2P 网络中各个不同的簇之间再通过纯 P2P 的模式将搜索节点相连起来。可以在各个搜索节点之间再次选取性能最优的节点,或者另外引入一新的性能最优的节点作为索引节点来保存整个网络中可以利 用的搜索节点信息,并且负责维护整个网络的结构。由于普通节点的文件搜索先在本地所属的簇内进行,只有查询结果不充分的时候,再通过搜索节点之间进行有限 的泛洪。这样就极为有效地消除纯P2P 结构中使用泛洪算法带来的网络拥塞、搜索迟缓等不利影响。同时,由于每个簇中的搜索节点监控着所有普通节点的行为, 能确保一些恶意的攻击行为能在网络局部得到控制,在一定程度上提高整个网络的负载平衡。
4 、第四代P2P( 发展中的P2P 技术)
应该说第四代P2P 并没有形成真正的代,而是在原有技术的基础上作了改进,提出和应用了一些新技术措施。典型的有:
(1) 动态口选择之一。目前的P2P 应用一般使用固定的端口,但是一些公司已 经开始引入协议可以动态选择传输口,一般说口的数目在1024~4000 之间。甚至P2P 流可以用原来用于HTTP(SMTP) 的口80(25) 来传输以 便隐藏。这将使得识别跨运营商网络的P2P 流,掌握其流量变得更困难。
(2) 双向下载。eD 和BT 等公司进一步发展引入双向流下载。该项技术可以多路并行下载和上载一个文件和/ 或多路并行下载一个文件的一部分。而目前传统的体系结构要求目标在完全下载后才能开始上载。这将大大加快文件分发速度。
(3) 智能结点弹性重叠网络。智能结点弹性重叠网络是系统应用P2P 技术来调度已有的IP 承载网资源的新技术,在路由器网络层上设置智能结点用各种链路对等连接,构成网络应用层的弹性重叠网。可以在保持互联网分布自治体系结构前提下、改善网络的安全性、QoS 和管理性。智能结点可以在路由器之间交换数 据,能够对数据分类( 分辩病毒、垃圾邮件) 保证安全。通过多个几何上分布的结点观察互联网,共享信息可以了解互联网蠕虫感染范围和性质。提供高性能、可扩 张、位置无关消息选路,以确定最近的本地资源位置。改进内容分发。使用智能结点探测互联网路径踪迹并且送回关于踪迹的数据; 解决目前互联网跨自治区路径选 择方面存在的问题。实现QoS 选路, 减少丢包和时延,快速自动恢复等。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Kertas StableDiffusion3 akhirnya di sini! Model ini dikeluarkan dua minggu lalu dan menggunakan seni bina DiT (DiffusionTransformer) yang sama seperti Sora. Ia menimbulkan kekecohan apabila ia dikeluarkan. Berbanding dengan versi sebelumnya, kualiti imej yang dijana oleh StableDiffusion3 telah dipertingkatkan dengan ketara Ia kini menyokong gesaan berbilang tema, dan kesan penulisan teks juga telah dipertingkatkan, dan aksara bercelaru tidak lagi muncul. StabilityAI menegaskan bahawa StableDiffusion3 ialah satu siri model dengan saiz parameter antara 800M hingga 8B. Julat parameter ini bermakna model boleh dijalankan terus pada banyak peranti mudah alih, dengan ketara mengurangkan penggunaan AI

Kertas kerja ini meneroka masalah mengesan objek dengan tepat dari sudut pandangan yang berbeza (seperti perspektif dan pandangan mata burung) dalam pemanduan autonomi, terutamanya cara mengubah ciri dari perspektif (PV) kepada ruang pandangan mata burung (BEV) dengan berkesan dilaksanakan melalui modul Transformasi Visual (VT). Kaedah sedia ada secara amnya dibahagikan kepada dua strategi: penukaran 2D kepada 3D dan 3D kepada 2D. Kaedah 2D-ke-3D meningkatkan ciri 2D yang padat dengan meramalkan kebarangkalian kedalaman, tetapi ketidakpastian yang wujud dalam ramalan kedalaman, terutamanya di kawasan yang jauh, mungkin menimbulkan ketidaktepatan. Manakala kaedah 3D ke 2D biasanya menggunakan pertanyaan 3D untuk mencuba ciri 2D dan mempelajari berat perhatian bagi kesesuaian antara ciri 3D dan 2D melalui Transformer, yang meningkatkan masa pengiraan dan penggunaan.

Ramalan trajektori memainkan peranan penting dalam pemanduan autonomi Ramalan trajektori pemanduan autonomi merujuk kepada meramalkan trajektori pemanduan masa hadapan kenderaan dengan menganalisis pelbagai data semasa proses pemanduan kenderaan. Sebagai modul teras pemanduan autonomi, kualiti ramalan trajektori adalah penting untuk kawalan perancangan hiliran. Tugas ramalan trajektori mempunyai timbunan teknologi yang kaya dan memerlukan kebiasaan dengan persepsi dinamik/statik pemanduan autonomi, peta ketepatan tinggi, garisan lorong, kemahiran seni bina rangkaian saraf (CNN&GNN&Transformer), dll. Sangat sukar untuk bermula! Ramai peminat berharap untuk memulakan ramalan trajektori secepat mungkin dan mengelakkan perangkap Hari ini saya akan mengambil kira beberapa masalah biasa dan kaedah pembelajaran pengenalan untuk ramalan trajektori! Pengetahuan berkaitan pengenalan 1. Adakah kertas pratonton teratur? A: Tengok survey dulu, hlm

Klasifikasi dan Analisis Penggunaan Komen JSP Komen JSP terbahagi kepada dua jenis: komen satu baris: berakhir dengan, hanya satu baris kod boleh diulas. Komen berbilang baris: bermula dengan /* dan berakhir dengan */, anda boleh mengulas berbilang baris kod. Contoh ulasan satu baris Contoh ulasan berbilang baris/**Ini ialah ulasan berbilang baris*Boleh mengulas pada berbilang baris kod*/Penggunaan ulasan JSP Komen JSP boleh digunakan untuk mengulas kod JSP agar lebih mudah dibaca

Pada 23 September, kertas kerja "DeepModelFusion:ASurvey" diterbitkan oleh Universiti Teknologi Pertahanan Nasional, JD.com dan Institut Teknologi Beijing. Gabungan/penggabungan model dalam ialah teknologi baru muncul yang menggabungkan parameter atau ramalan berbilang model pembelajaran mendalam ke dalam satu model. Ia menggabungkan keupayaan model yang berbeza untuk mengimbangi bias dan ralat model individu untuk prestasi yang lebih baik. Gabungan model mendalam pada model pembelajaran mendalam berskala besar (seperti LLM dan model asas) menghadapi beberapa cabaran, termasuk kos pengiraan yang tinggi, ruang parameter berdimensi tinggi, gangguan antara model heterogen yang berbeza, dsb. Artikel ini membahagikan kaedah gabungan model dalam sedia ada kepada empat kategori: (1) "Sambungan corak", yang menghubungkan penyelesaian dalam ruang berat melalui laluan pengurangan kerugian untuk mendapatkan gabungan model awal yang lebih baik.

Ditulis di atas & Pemahaman peribadi penulis ialah pembinaan semula 3D berasaskan imej ialah tugas mencabar yang melibatkan membuat inferens bentuk 3D objek atau pemandangan daripada set imej input. Kaedah berasaskan pembelajaran telah menarik perhatian kerana keupayaan mereka untuk menganggar secara langsung bentuk 3D. Kertas ulasan ini memfokuskan pada teknik pembinaan semula 3D yang canggih, termasuk menjana novel, pandangan ghaib. Gambaran keseluruhan perkembangan terkini dalam kaedah percikan Gaussian disediakan, termasuk jenis input, struktur model, perwakilan output dan strategi latihan. Cabaran yang tidak dapat diselesaikan dan hala tuju masa depan turut dibincangkan. Memandangkan kemajuan pesat dalam bidang ini dan banyak peluang untuk meningkatkan kaedah pembinaan semula 3D, pemeriksaan menyeluruh terhadap algoritma nampaknya penting. Oleh itu, kajian ini memberikan gambaran menyeluruh tentang kemajuan terkini dalam serakan Gaussian. (Leret ibu jari anda ke atas

Ungkapan Lambda ialah fungsi tanpa nama tanpa nama, dan sintaksnya ialah: (parameter_list)->expression. Mereka menampilkan ketanpa nama, kepelbagaian, kari dan penutupan. Dalam aplikasi praktikal, ungkapan Lambda boleh digunakan untuk mentakrifkan fungsi secara ringkas, seperti fungsi penjumlahan sum_lambda=lambdax,y:x+y, dan gunakan fungsi map() pada senarai untuk melaksanakan operasi penjumlahan.

Fail log sistem Linux ialah fail penting yang merekodkan pelbagai maklumat yang dijana semasa operasi sistem Dengan menganalisis fail log, kami boleh membantu kami memahami status pengendalian, penyelesaian masalah dan pengoptimuman prestasi sistem. Artikel ini akan meneroka secara mendalam klasifikasi dan fungsi fail log sistem Linux, dan menggabungkannya dengan contoh kod khusus untuk membantu pembaca memahami dengan lebih baik. 1. Klasifikasi fail log sistem Linux 1. Log sistem Log sistem ialah fail log yang merekodkan peristiwa penting seperti permulaan sistem, penutupan, log masuk pengguna dan penutupan. Dalam sistem Linux
