XHTML入门学习教程:XHTML超级链接_HTML/Xhtml_网页制作
超级链接标签
毫不夸张的说,是超级链接把整个互联网连接了起来。超级链接几乎可以指向互联网上的任何资源,例如另外一个网页、一张图片、一首MP3歌曲等等。而利用XHTML建立超级链接的语法却非常简单,只需要一对标签即可:
页面上将要显示的文字或者图片等
例如:
脚本之家
将会在浏览器中显示为一个超级链接,点击它就将进入脚本之家(http://www.jb51.net/)。效果如下:
脚本之家
其中标签中的href属性就是这个超级链接所要指向的地址,她可以是一般的网址也可以是邮件的地址,在稍后的练习实例中我们将创建一个指向邮件地址的超级链接。和之间的内容(元素)将被作为超级链接显示在网页上。注意href属性值为一般网址(绝对路径)时,其"http://"是不可以省略的,否则浏览器将把它作为相对路径来识别。绝对路径与相对路径的区别不在本XHTML教程的讨论范围之内,如果你不了解可以到百度搜索相关的资料。
页内跳转超级链接(锚记)
您在浏览其他网站的时候可能注意到了,有一些超级链接可以让您回到页面的顶端或者是当前网页内任何一个位置。就像下面这个链接:
回到标题
它的实现方法如下,首先在标题处加上如下代码。:
XHTML入门学习教程——XHTML超级链接
而超级链接本身的代码为:
回到标题
页面内的跳转在您的页面内有大量的内容时,可以让你的用户很快的找到所需要的信息。通常情况下都是在一些说明性的网页内做目录使用。 链接练习
下面练习在之前的"index.html"中添加超级链接。打开”index.html“,对代码做如下修改:
中间代码省略……
Copyright©2005-2006XXX版权没有

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyebaran bukan sahaja boleh meniru lebih baik, tetapi juga "mencipta". Model resapan (DiffusionModel) ialah model penjanaan imej. Berbanding dengan algoritma yang terkenal seperti GAN dan VAE dalam bidang AI, model resapan mengambil pendekatan yang berbeza. Idea utamanya ialah proses menambah hingar pada imej dan kemudian secara beransur-ansur menolaknya. Cara mengecilkan dan memulihkan imej asal adalah bahagian teras algoritma. Algoritma akhir mampu menghasilkan imej daripada imej bising rawak. Dalam beberapa tahun kebelakangan ini, pertumbuhan luar biasa AI generatif telah membolehkan banyak aplikasi menarik dalam penjanaan teks ke imej, penjanaan video dan banyak lagi. Prinsip asas di sebalik alat generatif ini ialah konsep resapan, mekanisme pensampelan khas yang mengatasi batasan kaedah sebelumnya.

Kimi: Hanya dalam satu ayat, dalam sepuluh saat sahaja, PPT akan siap. PPT sangat menjengkelkan! Untuk mengadakan mesyuarat, anda perlu mempunyai PPT; untuk menulis laporan mingguan, anda perlu mempunyai PPT untuk membuat pelaburan, anda perlu menunjukkan PPT walaupun anda menuduh seseorang menipu, anda perlu menghantar PPT. Kolej lebih seperti belajar jurusan PPT Anda menonton PPT di dalam kelas dan melakukan PPT selepas kelas. Mungkin, apabila Dennis Austin mencipta PPT 37 tahun lalu, dia tidak menyangka satu hari nanti PPT akan berleluasa. Bercakap tentang pengalaman sukar kami membuat PPT membuatkan kami menitiskan air mata. "Ia mengambil masa tiga bulan untuk membuat PPT lebih daripada 20 muka surat, dan saya menyemaknya berpuluh-puluh kali. Saya rasa ingin muntah apabila saya melihat PPT itu." ialah PPT." Jika anda mengadakan mesyuarat dadakan, anda harus melakukannya

Pada awal pagi 20 Jun, waktu Beijing, CVPR2024, persidangan penglihatan komputer antarabangsa teratas yang diadakan di Seattle, secara rasmi mengumumkan kertas kerja terbaik dan anugerah lain. Pada tahun ini, sebanyak 10 kertas memenangi anugerah, termasuk 2 kertas terbaik dan 2 kertas pelajar terbaik Selain itu, terdapat 2 pencalonan kertas terbaik dan 4 pencalonan kertas pelajar terbaik. Persidangan teratas dalam bidang visi komputer (CV) ialah CVPR, yang menarik sejumlah besar institusi penyelidikan dan universiti setiap tahun. Mengikut statistik, sebanyak 11,532 kertas telah diserahkan tahun ini, 2,719 daripadanya diterima, dengan kadar penerimaan 23.6%. Menurut analisis statistik data CVPR2024 Institut Teknologi Georgia, dari perspektif topik penyelidikan, bilangan kertas terbesar ialah sintesis dan penjanaan imej dan video (Imageandvideosyn

1. Mula-mula buka WeChat. 2. Klik [+] di penjuru kanan sebelah atas. 3. Klik kod QR untuk mengutip bayaran. 4. Klik tiga titik kecil di penjuru kanan sebelah atas. 5. Klik untuk menutup peringatan suara untuk ketibaan pembayaran.

Selepas hujan pada musim panas, anda sering dapat melihat pemandangan cuaca istimewa yang indah dan ajaib - pelangi. Ini juga merupakan pemandangan jarang yang boleh ditemui dalam fotografi, dan ia sangat fotogenik. Terdapat beberapa syarat untuk pelangi muncul: pertama, terdapat titisan air yang mencukupi di udara, dan kedua, matahari bersinar pada sudut yang lebih rendah. Oleh itu, adalah paling mudah untuk melihat pelangi pada sebelah petang selepas hujan reda. Walau bagaimanapun, pembentukan pelangi sangat dipengaruhi oleh cuaca, cahaya dan keadaan lain, jadi ia biasanya hanya bertahan untuk jangka masa yang singkat, dan masa tontonan dan penangkapan terbaik adalah lebih pendek. Jadi apabila anda menemui pelangi, bagaimanakah anda boleh merakamnya dengan betul dan mengambil gambar dengan kualiti? 1. Cari pelangi Selain keadaan yang dinyatakan di atas, pelangi biasanya muncul mengikut arah cahaya matahari, iaitu jika matahari bersinar dari barat ke timur, pelangi lebih cenderung muncul di timur.

Kami tahu bahawa LLM dilatih pada kelompok komputer berskala besar menggunakan data besar-besaran Tapak ini telah memperkenalkan banyak kaedah dan teknologi yang digunakan untuk membantu dan menambah baik proses latihan LLM. Hari ini, perkara yang ingin kami kongsikan ialah artikel yang mendalami teknologi asas dan memperkenalkan cara menukar sekumpulan "logam kosong" tanpa sistem pengendalian pun menjadi gugusan komputer untuk latihan LLM. Artikel ini datang daripada Imbue, sebuah permulaan AI yang berusaha untuk mencapai kecerdasan am dengan memahami cara mesin berfikir. Sudah tentu, mengubah sekumpulan "logam kosong" tanpa sistem pengendalian menjadi gugusan komputer untuk latihan LLM bukanlah proses yang mudah, penuh dengan penerokaan dan percubaan dan kesilapan, tetapi Imbue akhirnya berjaya melatih LLM dengan 70 bilion parameter proses terkumpul

Editor Laporan Kuasa Mesin: Yang Wen Gelombang kecerdasan buatan yang diwakili oleh model besar dan AIGC telah mengubah cara kita hidup dan bekerja secara senyap-senyap, tetapi kebanyakan orang masih tidak tahu cara menggunakannya. Oleh itu, kami telah melancarkan lajur "AI dalam Penggunaan" untuk memperkenalkan secara terperinci cara menggunakan AI melalui kes penggunaan kecerdasan buatan yang intuitif, menarik dan padat serta merangsang pemikiran semua orang. Kami juga mengalu-alukan pembaca untuk menyerahkan kes penggunaan yang inovatif dan praktikal. Pautan video: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Baru-baru ini, vlog kehidupan seorang gadis yang tinggal bersendirian menjadi popular di Xiaohongshu. Animasi gaya ilustrasi, ditambah dengan beberapa perkataan penyembuhan, boleh diambil dengan mudah dalam beberapa hari sahaja.

Retrieval-augmented generation (RAG) ialah teknik yang menggunakan perolehan semula untuk meningkatkan model bahasa. Secara khusus, sebelum model bahasa menjana jawapan, ia mendapatkan semula maklumat yang berkaitan daripada pangkalan data dokumen yang luas dan kemudian menggunakan maklumat ini untuk membimbing proses penjanaan. Teknologi ini boleh meningkatkan ketepatan dan perkaitan kandungan dengan banyak, mengurangkan masalah halusinasi dengan berkesan, meningkatkan kelajuan kemas kini pengetahuan, dan meningkatkan kebolehkesanan penjanaan kandungan. RAG sudah pasti salah satu bidang penyelidikan kecerdasan buatan yang paling menarik. Untuk butiran lanjut tentang RAG, sila rujuk artikel lajur di tapak ini "Apakah perkembangan baharu dalam RAG, yang pakar dalam menebus kekurangan model besar?" Ulasan ini menerangkannya dengan jelas." Tetapi RAG tidak sempurna, dan pengguna sering menghadapi beberapa "titik kesakitan" apabila menggunakannya. Baru-baru ini, penyelesaian AI generatif termaju NVIDIA
