新版本cocos2d-x工程项目的创建(本版本为cocos2d-x
据说cocos2d-x从2.1.2以后就可以使用python创建项目工程,我是从2.1.3开始学习的,之前没有注意到这一点,一直都是用那些比较复杂的办法创建工程,感觉也有点蛋疼,最近下载了2.1.5来使用,发现里面没有了vs模版,没有create-project.bat等创建win32和androi
据说cocos2d-x从2.1.2以后就可以使用python创建项目工程,我是从2.1.3开始学习的,之前没有注意到这一点,一直都是用那些比较复杂的办法创建工程,感觉也有点蛋疼,最近下载了2.1.5来使用,发现里面没有了vs模版,没有create-project.bat等创建win32和android的项目文件,于是上网查询,才知道2.1.5以后彻底采用pyhton来创建项目工程了,我按照网上办法使用了一下觉得很是方便和简单,早知道这事的话就不用浪费这么多时间在工程配置上了!下面开始创建工程:
1、需要下载python2.7.3安装(http://pan.baidu.com/share/link?shareid=1463897023&uk=4061830256),安装目录如下
2、配置python环境变量在path中加入python安装路径我的是D:\python2.7.3
3、自己写一个create-project.bat放于cocos根目录
@echo off cd tools\project-creator set /p projectName=projectName: if "%projectName%"=="" goto lblExit set /p packageName=packageName: if "%packageName%"=="" goto lblExit2 create_project.py -project %projectName% -package %packageName% -language cpp pause exit :lblExit @echo 项目名称不能为空! :lblExit2 @echo 包名称不能为空! pause
注意:如果出现错误请在这儿下载http://pan.baidu.com/s/1mTsf5一个已经做好的,不需要任何修改。
4、这样就可以直接使用create-project.bat创建工程
如下图,依次输入工程名、包名(注意一定要是org.test.hello这种类型),回车就能创建项目
5、打开D:\Cocos2dx\cocos2d-x_v2.1.5b\projects可以看到我们刚才创建的工程
打开Test可以看到里面已经自动创建了包括android、ios、win32、mac等主流平台的工程
6、运行win32下的工程Test.sln(前提得装好vs)文件即可打开win32工程
等文件与库自动加载完毕之后可以在解决方案中看到已经自动加载了所需要的常用库(如下图),这样直接运行程序就ok了,过程与以前相比真是十分的简单
7、在android下使用也是特别的简单,只需要将安装好adt的eclipse打开(前提是电脑得安装好cygwin和ndk),导入Test文件下的pro.android运行即可

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Ia juga merupakan video Tusheng, tetapi PaintsUndo telah mengambil laluan yang berbeza. Pengarang ControlNet LvminZhang mula hidup semula! Kali ini saya menyasarkan bidang lukisan. Projek baharu PaintsUndo telah menerima 1.4kstar (masih meningkat secara menggila) tidak lama selepas ia dilancarkan. Alamat projek: https://github.com/lllyasviel/Paints-UNDO Melalui projek ini, pengguna memasukkan imej statik, dan PaintsUndo secara automatik boleh membantu anda menjana video keseluruhan proses mengecat, daripada draf baris hingga produk siap . Semasa proses lukisan, perubahan garisan adalah menakjubkan Hasil akhir video sangat serupa dengan imej asal: Mari kita lihat lukisan lengkap.

Lajur AIxiv ialah lajur di mana tapak ini menerbitkan kandungan akademik dan teknikal. Dalam beberapa tahun kebelakangan ini, lajur AIxiv laman web ini telah menerima lebih daripada 2,000 laporan, meliputi makmal terkemuka dari universiti dan syarikat utama di seluruh dunia, mempromosikan pertukaran dan penyebaran akademik secara berkesan. Jika anda mempunyai kerja yang sangat baik yang ingin anda kongsikan, sila berasa bebas untuk menyumbang atau hubungi kami untuk melaporkan. E-mel penyerahan: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com Semua pengarang kertas kerja ini adalah daripada pasukan guru Zhang Lingming di Universiti Illinois di Urbana-Champaign (UIUC), termasuk: Steven Code repair; pelajar kedoktoran tahun empat, penyelidik

Jika jawapan yang diberikan oleh model AI tidak dapat difahami sama sekali, adakah anda berani menggunakannya? Memandangkan sistem pembelajaran mesin digunakan dalam bidang yang lebih penting, menjadi semakin penting untuk menunjukkan sebab kita boleh mempercayai output mereka, dan bila tidak mempercayainya. Satu cara yang mungkin untuk mendapatkan kepercayaan dalam output sistem yang kompleks adalah dengan menghendaki sistem menghasilkan tafsiran outputnya yang boleh dibaca oleh manusia atau sistem lain yang dipercayai, iaitu, difahami sepenuhnya sehingga apa-apa ralat yang mungkin boleh dilakukan. dijumpai. Contohnya, untuk membina kepercayaan dalam sistem kehakiman, kami memerlukan mahkamah memberikan pendapat bertulis yang jelas dan boleh dibaca yang menjelaskan dan menyokong keputusan mereka. Untuk model bahasa yang besar, kita juga boleh menggunakan pendekatan yang sama. Walau bagaimanapun, apabila mengambil pendekatan ini, pastikan model bahasa menjana

sorakan! Bagaimana rasanya apabila perbincangan kertas adalah perkataan? Baru-baru ini, pelajar di Universiti Stanford mencipta alphaXiv, forum perbincangan terbuka untuk kertas arXiv yang membenarkan soalan dan ulasan disiarkan terus pada mana-mana kertas arXiv. Pautan laman web: https://alphaxiv.org/ Malah, tidak perlu melawati tapak web ini secara khusus. Hanya tukar arXiv dalam mana-mana URL kepada alphaXiv untuk terus membuka kertas yang sepadan di forum alphaXiv: anda boleh mencari perenggan dengan tepat dalam. kertas itu, Ayat: Dalam ruang perbincangan di sebelah kanan, pengguna boleh menyiarkan soalan untuk bertanya kepada pengarang tentang idea dan butiran kertas tersebut Sebagai contoh, mereka juga boleh mengulas kandungan kertas tersebut, seperti: "Diberikan kepada

Tunjukkan rantai sebab kepada LLM dan ia mempelajari aksiom. AI sudah pun membantu ahli matematik dan saintis menjalankan penyelidikan Contohnya, ahli matematik terkenal Terence Tao telah berulang kali berkongsi pengalaman penyelidikan dan penerokaannya dengan bantuan alatan AI seperti GPT. Untuk AI bersaing dalam bidang ini, keupayaan penaakulan sebab yang kukuh dan boleh dipercayai adalah penting. Penyelidikan yang akan diperkenalkan dalam artikel ini mendapati bahawa model Transformer yang dilatih mengenai demonstrasi aksiom transitiviti sebab pada graf kecil boleh digeneralisasikan kepada aksiom transitiviti pada graf besar. Dalam erti kata lain, jika Transformer belajar untuk melakukan penaakulan sebab yang mudah, ia boleh digunakan untuk penaakulan sebab yang lebih kompleks. Rangka kerja latihan aksiomatik yang dicadangkan oleh pasukan adalah paradigma baharu untuk pembelajaran penaakulan sebab berdasarkan data pasif, dengan hanya demonstrasi

Baru-baru ini, Hipotesis Riemann, yang dikenali sebagai salah satu daripada tujuh masalah utama milenium, telah mencapai kejayaan baharu. Hipotesis Riemann ialah masalah yang tidak dapat diselesaikan yang sangat penting dalam matematik, berkaitan dengan sifat tepat taburan nombor perdana (nombor perdana ialah nombor yang hanya boleh dibahagikan dengan 1 dan dirinya sendiri, dan ia memainkan peranan asas dalam teori nombor). Dalam kesusasteraan matematik hari ini, terdapat lebih daripada seribu proposisi matematik berdasarkan penubuhan Hipotesis Riemann (atau bentuk umumnya). Dalam erti kata lain, sebaik sahaja Hipotesis Riemann dan bentuk umumnya dibuktikan, lebih daripada seribu proposisi ini akan ditetapkan sebagai teorem, yang akan memberi kesan yang mendalam terhadap bidang matematik dan jika Hipotesis Riemann terbukti salah, maka antara cadangan ini sebahagian daripadanya juga akan kehilangan keberkesanannya. Kejayaan baharu datang daripada profesor matematik MIT Larry Guth dan Universiti Oxford

Lajur AIxiv ialah lajur di mana tapak ini menerbitkan kandungan akademik dan teknikal. Dalam beberapa tahun kebelakangan ini, lajur AIxiv laman web ini telah menerima lebih daripada 2,000 laporan, meliputi makmal terkemuka dari universiti dan syarikat utama di seluruh dunia, mempromosikan pertukaran dan penyebaran akademik secara berkesan. Jika anda mempunyai kerja yang sangat baik yang ingin anda kongsikan, sila berasa bebas untuk menyumbang atau hubungi kami untuk melaporkan. E-mel penyerahan: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com. Pengenalan Dalam beberapa tahun kebelakangan ini, aplikasi model bahasa besar multimodal (MLLM) dalam pelbagai bidang telah mencapai kejayaan yang luar biasa. Walau bagaimanapun, sebagai model asas untuk banyak tugas hiliran, MLLM semasa terdiri daripada rangkaian Transformer yang terkenal, yang

Bolehkah model bahasa benar-benar digunakan untuk ramalan siri masa? Menurut Undang-undang Tajuk Berita Betteridge (sebarang tajuk berita yang berakhir dengan tanda soal boleh dijawab dengan "tidak"), jawapannya mestilah tidak. Fakta nampaknya benar: LLM yang begitu berkuasa tidak dapat mengendalikan data siri masa dengan baik. Siri masa, iaitu, siri masa, seperti namanya, merujuk kepada satu set jujukan titik data yang disusun mengikut urutan masa. Analisis siri masa adalah kritikal dalam banyak bidang, termasuk ramalan penyebaran penyakit, analisis runcit, penjagaan kesihatan dan kewangan. Dalam bidang analisis siri masa, ramai penyelidik baru-baru ini mengkaji cara menggunakan model bahasa besar (LLM) untuk mengelas, meramal dan mengesan anomali dalam siri masa. Makalah ini menganggap bahawa model bahasa yang pandai mengendalikan kebergantungan berjujukan dalam teks juga boleh digeneralisasikan kepada siri masa.
