优化案例:缺少整体规划导致DB性能问题
最近几天对客户的一个核心数据库进行了优化,将资源消耗较高的SQL优化完成之后,物理读和逻辑读总量得到了降低。客户反馈优化后性能有提升,但仍然在某些工作日的业务高峰时段存在性能问题。 我们通过将性能不佳的业务高峰时段(即问题时段)与性能正常的业务
最近几天对客户的一个核心数据库进行了优化,将资源消耗较高的SQL优化完成之后,物理读和逻辑读总量得到了降低。客户反馈优化后性能有提升,但仍然在某些工作日的业务高峰时段存在性能问题。我们通过将性能不佳的业务高峰时段(即问题时段)与性能正常的业务高峰时段(即基线时段)的性能数据进行了对比,发现了一些问题:
基线时段为2014-1-15日上午8:00-上午9:00,此时段TPS(每秒事务量)为:46T/s,该时段的总DB Time为:626.2 (mins)
问题时段为2014-1-20日上午8:00-上午9:00,此时段TPS为:47T/s(仅比基线时段多1T/s,可认为两者业务量相当),该时段的总DB Time为2361.4 (mins)
同样均为1小时的取样时间段,问题段的总DB Time是基线的近4倍,而通过对比两者的性能视图,发现问题时段的单次IO延迟非常高,如下:
Event Waits Time(s) Avg wait (ms) % DB time Wait Class
DB CPU 2,082 55.42
db file sequential read 62,140 774 12 20.61 User I/O
direct path read 177,440 575 3 15.31 User I/O
log file sync 17,486 145 8 3.86 Commit
gc cr block 2-way 98,519 30 0 0.80 Cluster
基线时段单次序列读延时为12ms,单次直接读延时为3ms,单次redolog写延时为8ms,
Event Waits Time(s) Avg wait (ms) % DB time Wait Class
direct path read 180,200 4,643 26 32.77 User I/O
db file sequential read 55,483 2,286 41 16.13 User I/O
DB CPU 1,917 13.53
gc buffer busy acquire 5,513 1,474 267 10.40 Cluster
log file sync 17,541 1,298 74 9.16 Commit
而问题时段单次序列读延时为41ms,单次直接读延时为26ms,单次redolog写延时为74ms
(Oracle文档中建议的单次IO正常延时应为0-20ms,否则需升级硬件),
即相比基线时段,在业务量不变的情况下,问题时段的IO效率下降非常明显,怀疑是存储层面的同一个RAID组中有其他业务系统有可能恰好在问题时段有大量的IO操作,
导致我们正在优化的系统的IO延迟较大。跟客户的存储人员确认发现确实如此,存储人员并没有结合数据库对存储做出合理规划,仅仅从容量管理上对自己工作的方便性出发,划分并分配LUN。由此导致性能问题,我想这种问题在很多企业都是存在的,跨部门之间的沟通不畅导致没有从整体上的规划出现,最终出现问题由DB买单。
因此建议客户进行存储改善:
1.将这种关键系统在存储层面与其他系统隔离,避免互相影响IO;
2.有预算的情况下升级存储。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Perbandingan prestasi rangka kerja Java yang berbeza: Pemprosesan permintaan REST API: Vert.x adalah yang terbaik, dengan kadar permintaan 2 kali SpringBoot dan 3 kali Dropwizard. Pertanyaan pangkalan data: HibernateORM SpringBoot adalah lebih baik daripada Vert.x dan ORM Dropwizard. Operasi caching: Pelanggan Hazelcast Vert.x lebih unggul daripada mekanisme caching SpringBoot dan Dropwizard. Rangka kerja yang sesuai: Pilih mengikut keperluan aplikasi Vert.x sesuai untuk perkhidmatan web berprestasi tinggi, SpringBoot sesuai untuk aplikasi intensif data, dan Dropwizard sesuai untuk seni bina perkhidmatan mikro.

Perbandingan prestasi kaedah membalik nilai kunci tatasusunan PHP menunjukkan bahawa fungsi array_flip() berprestasi lebih baik daripada gelung for dalam tatasusunan besar (lebih daripada 1 juta elemen) dan mengambil masa yang lebih singkat. Kaedah gelung untuk membalikkan nilai kunci secara manual mengambil masa yang agak lama.

Kerumitan masa mengukur masa pelaksanaan algoritma berbanding saiz input. Petua untuk mengurangkan kerumitan masa program C++ termasuk: memilih bekas yang sesuai (seperti vektor, senarai) untuk mengoptimumkan storan dan pengurusan data. Gunakan algoritma yang cekap seperti isihan pantas untuk mengurangkan masa pengiraan. Hapuskan berbilang operasi untuk mengurangkan pengiraan berganda. Gunakan cawangan bersyarat untuk mengelakkan pengiraan yang tidak perlu. Optimumkan carian linear dengan menggunakan algoritma yang lebih pantas seperti carian binari.

Teknik berkesan untuk mengoptimumkan prestasi berbilang benang C++ termasuk mengehadkan bilangan utas untuk mengelakkan perbalahan sumber. Gunakan kunci mutex ringan untuk mengurangkan perbalahan. Optimumkan skop kunci dan minimumkan masa menunggu. Gunakan struktur data tanpa kunci untuk menambah baik keselarasan. Elakkan sibuk menunggu dan maklumkan urutan ketersediaan sumber melalui acara.

Dalam PHP, penukaran tatasusunan kepada objek akan memberi kesan pada prestasi, yang dipengaruhi terutamanya oleh faktor seperti saiz tatasusunan, kerumitan dan kelas objek. Untuk mengoptimumkan prestasi, pertimbangkan untuk menggunakan iterator tersuai, mengelakkan penukaran yang tidak perlu, tatasusunan penukaran kelompok dan teknik lain.

Mengikut penanda aras, untuk aplikasi kecil dan berprestasi tinggi, Quarkus (permulaan pantas, memori rendah) atau Micronaut (TechEmpower cemerlang) adalah pilihan yang ideal. SpringBoot sesuai untuk aplikasi bertindan penuh yang besar, tetapi mempunyai masa permulaan dan penggunaan memori yang lebih perlahan.

Apabila membangunkan aplikasi berprestasi tinggi, C++ mengatasi bahasa lain, terutamanya dalam penanda aras mikro. Dalam penanda aras makro, kemudahan dan mekanisme pengoptimuman bahasa lain seperti Java dan C# mungkin berprestasi lebih baik. Dalam kes praktikal, C++ berprestasi baik dalam pemprosesan imej, pengiraan berangka dan pembangunan permainan, dan kawalan langsungnya terhadap pengurusan memori dan akses perkakasan membawa kelebihan prestasi yang jelas.

Cara terbaik untuk menjana nombor rawak dalam Go bergantung pada tahap keselamatan yang diperlukan oleh aplikasi anda. Keselamatan rendah: Gunakan pakej matematik/rand untuk menjana nombor pseudo-rawak, sesuai untuk kebanyakan aplikasi. Keselamatan tinggi: Gunakan pakej crypto/rand untuk menjana bait rawak selamat secara kriptografi, sesuai untuk aplikasi yang memerlukan rawak yang lebih kuat.
